PACS: 62.50.+p, 71.70.Gm, 75.10.Nr, 75.47.Lx

С.В. Труханов¹, В.В. Федотова¹, И.О. Троянчук¹, А.В. Труханов², И.М. Фита³, Н. Szymczak⁴

ВЛИЯНИЕ ГИДРОСТАТИЧЕСКОГО ДАВЛЕНИЯ НА СОСТОЯНИЕ СПИНОВОГО СТЕКЛА В МАНГАНИТАХ

¹Объединенный институт физики твердого тела и полупроводников НАН Беларуси ул. П. Бровки, 19, г. Минск, 220072, Республика Беларусь E-mail: truhanov@ifttp.bas-net.by

²Витебский государственный университет Московский пр., 33, г. Витебск, 210036, Республика Беларусь

³Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

⁴Institute of Physics PAS, Lotnikov str., 32/46, 02-668 Warsaw, Poland

Проведены исследования химического состава, морфологии поверхности, кристаллической структуры и магнитных свойств анион-дефицитных манганитов со структурой перовскита $La_{0.70}A_{0.30}MnO_{3-\gamma}$ (A = Ca, Sr, Ba; $0 \le \gamma \le 0.2$). С ростом числа вакансий кислорода ($\gamma \ge 0.15$) анион-дефицитные образцы переходят из ферромагнитного в состояние спинового стекла. В интервале приложенного гидростатического давления (0–1 GPa) образцы (A = Sr и $\gamma \ge 0.15$) являются спиновыми стеклами. Температура замерзания магнитных моментов $T_f \approx 45 \text{ K}$, средний диаметр ферромагнитного кластера $d \approx 10$ nm. Объемная часть образца ($A = Sr \ u \ \gamma = 0.15$), находящаяся в ферромагнитном состоянии, V ~ 13%. Действие гидростатического давления приводит к увеличению T_f со скоростью 4.3 K/GPa, в то время как температура магнитного упорядочения T_{MO} возрастает со скоростью 12.9 K/GPa. Под действием давления возрастает также и ферромагнитная часть образца ($\Delta V_{fer} =$ Усиление ферромагнитных свойств анион-дефицитного манганита 5%.) La_{0.70}Sr_{0.30}MnO_{2.85} в условиях гидростатического давления есть следствие перераспределения вакансий кислорода и уменьшения параметров элементарной ячейки.

Физические свойства манганитов продолжают привлекать пристальное внимание многих исследователей, работающих в области физики конденсированного состояния [1–5]. В этих соединениях тесно переплетены и взаимосвязаны орбитальные, зарядовые, спиновые и решеточные степени свободы, что в значительной степени определяет наблюдаемое многообразие фазовых состояний и физических свойств [6–8]. Среди большой совокупности факторов, определяющих свойства манганитов, наиболее значимыми являются такие, как стехиометрия (вид и соотношение ионов) и кристаллоструктурные параметры (средние длина связи (Mn–O) и угол связи (Mn–O–Mn)).

Принято считать, что магнитные и электронные свойства замещенных манганитов определяются шириной W электронной e_g -зоны: $W = \cos(1/2[\pi - \langle Mn-O-Mn\rangle])/\langle Mn-O\rangle^{3.5}$ [9]. Чем больше W, тем сильнее выражены ферромагнитные и металлические свойства [10,11]. Действие гидростатического давления на манганиты, как правило, увеличивает W, а следовательно, стабилизирует ферромагнитное металлическое состояние, причем, чем выше значение W, тем слабее влияние давления. Это влияние определяется такой структурной характеристикой, как средний катионный радиус A-подрешетки перовскита $\langle r_A \rangle$. Так, для манганита La_{0.70}Ca_{0.30}MnO₃ ($\langle r_A \rangle = 1.205$ Å) скорость изменения T_C составляет ~ 20 K/GPa, а для La_{0.70}Ba_{0.30}MnO₃ ($\langle r_A \rangle = 1.292$ Å) – $dT_C/dP \approx 6$ K/GPa [12].

Действие давления в основном уменьшает объем элементарной ячейки V, что сводится к уменьшению длины связи $\langle Mn-O \rangle$ и увеличению угла связи $\langle Mn-O-Mn \rangle$. Однако эти два процесса не равносильны. Так, для манганитов $Ln_{0.70}A_{0.30}MnO_3$ ($\langle r_A \rangle = 1.205$ Å) зафиксированы следующие значения: $d\langle Mn-O \rangle/dP \approx -3.9 \cdot 10^{-3}$ Å/GPa [13] и $d\langle Mn-O-Mn \rangle/dP \approx -3.9 \cdot 10^{-4}$ deg/GPa [14]. Кроме этого, под давлением может наблюдаться упорядочение ионных вакансий [15].

В то время как влияние гидростатического давления на ферро- и антиферромагнитные составы манганитов достаточно хорошо изучено, вопрос о состоянии спиновых стекол остается открытым. Это обстоятельство побудило нас исследовать в условиях гидростатического давления (до 1 GPa) магнитные свойства оптимально допированных манганитов с вакансиями кислорода La_{0.70}A_{0.30}MnO_{3-γ} (A = Ca, Sr, Ba; $0 \le \gamma \le 0.20$), которые демонстрируют свойства спинового стекла. Следует отметить, что вакансии кислорода слабо уменьшают $\langle r_A \rangle$. Спин-стекольное состояние в этих образцах возникает в результате разрыва обменных связей Mn–O–Mn. Интересной особенностью образцов с $\gamma = 0.15$ является тот факт, что они содержат только ионы трехвалентного марганца La³⁺_{0.70}A²⁺_{0.30}Mn³⁺O²⁻_{2.85}.

Методика получения анион-дефицитных La_{0.70}A_{0.30}MnO_{3- γ} (A = Ca, Sr, Ba; 0 $\leq \gamma \leq$ 0.2) образцов дана в [16–18]. Наблюдение топографии поверхности исследуемых образцов осуществляли с помощью растрового электронного микроскопа марки LEO1455VP фирмы «Carl Zeiss». Рентгеноспектральный микроанализ проводили с использованием энергодисперсионного SiLi-полупроводникового детектора фирмы «Röntec» (Германия). Рентгенофазовый анализ был проведен на дифрактометре ДРОН-3 в Cr K_{α} излучении при комнатной температуре. Величину содержания кислорода определяли методом термогравиметрического анализа. Исследование удельной намагниченности выполняли на коммерческом вибрационном

Рис. 1. Топография поверхности, полученная с помощью растрового электронного микроскопа для анион-дефицитного манганита La_{0.70}Sr_{0.30}MnO_{2.85}

Рис. 2. Концентрационная зависимость параметров элементарной ячейки a и c (a), угла α и объема элементарной ячейки $V(\delta)$, а также длин связи Mn–O1 и Mn–O2 (b) при комнатной температуре и атмосферном давлении для аниондефицитных образцов La_{0.70}Sr_{0.30}MnO_{3- γ}

магнитометре OI-3001. Температуру магнитного упорядочения (T_{MO}) определяли по температурной зависимости ZFC-кривой в поле 100 Ое как точку перегиба (min{ dM_{ZFC}/dT }). Температуру замерзания магнитферромагнитных ных моментов кластеров T_f измеряли как температуру, соответствующую максимуму ZFC-кривой. Спонтанный атомный магнитный момент σ_S определяли по полевой зависимости линейной экстраполяцией к нулевому полю. Для измерений удельной намагниченности в условиях гидростатического давления использовали миниатюрный Ве-Сиконтейнер. В качестве среды, передающей давление, выбрали смесь минерального масла и керосина. Давление градуировали при низких температурах, используя сверхпроводящий переход свинца.

Стехиометрические образцы характеризуются средним размером гранул ~ 10 µm, в то время как анион-дефицитные ~ 3 µm. Под гранулами понимаются гомогенные обпространства, отделенные ласти друг от друга сплошными линиями раздела. Из рис. 1 видно, что размер гранул характеризуется некоторым разбросом. Термическая обработка поликристаллических образцов при более низких температурах в восстановительной среде уменьшает средний размер гранул и увеличивает пористость. Установлено, что все полученные образцы обладают однородным распределением химических элементов, соответствующих химической номинальной записи $La_{0.70}A_{0.30}MnO_{3-\gamma}$.

В образцах с $\gamma \ge 0.15$ для случая A = Ca наблюдается *O*-орторомбическая (SG = *Pnma*, Z = 4) элементарная ячейка [16], для A = Sr – тетрагональная (SG = *I4/mcm*, Z = 2) [18], для A = Ba – кубическая (SG = *Pm* $\overline{3}$ *m*, Z = 1) [19]. На рис. 2 представлены параметры элементарной ячейки и длины связей для образцов La_{0.70}Sr_{0.30}MnO_{3- γ} при комнатной температуре в условиях атмо-сферного давления.

Стехиометрический La_{0.70}Sr_{0.30}MnO₃ есть ферромагнетик с $T_C = 360$ K [20]. Согласно результатам магнитных измерений анион-дефицитный La_{0.70}Sr_{0.30}MnO_{2.85} представляет собой спиновое стекло с температурой замерзания $T_f \approx 47$ K [21].

Хорошо известно, что в орбитально-разупорядоченном состоянии сверхобменное взаимодействие Mn³⁺(6)–O–Mn³⁺(6) для октаэдрической координации катионов марганца является ферромагнитным, тогда как для пентаэдрической координации Mn³⁺(5)–O–Mn³⁺(5) – антиферромагнитным [22]. Конкуренция во взаимодействии между ферро- и антиферромагнитно упо-

Рис. 3. Температурная зависимость ZFC (светлые символы) и FC (темные символы) удельной намагниченности (a) в поле 100 Ое и производной ZFC удельной намагниченности (δ) при атмосферном давлении (кружки) и давлении 0.93 GPa (прямоугольники) для анион-дефицитного образца La_{0.70}Sr_{0.30}MnO_{2.85}

рядоченными кластерами приводит к фрустрации обменных связей и образованию состояния спинового стекла. Поведение ZFC- и FC-кривых удельной намагниченности (рис. 3,б) и производной удельной намагниченности (рис. 3,а) служит доказательством состояния спинового стекла. ZFC- и FC-кривые сильно различаются при температуре ниже T_{f} , что свидетельствует об отсутствии дальнего ферромагнитного порядка. При атмосферном давлении (P = 0 GPa) ZFC-кривая демонстрирует резкий пик при $T_f \approx 47$ K, в то время как FCкривая почти постоянна при температуре ниже T_{f} . Обе кривые почти совпадают при температуре выше $T_f \approx$ ≈ 47 К. Они являются вогнутыми вниз и постепенно убывают. Воздействие внешнего давления повышает T_f и *T*_{MO} со скоростями соответственно 4.30 и 12.90 К/GPa. Под действием давления P = 0.93 GPa (рис. 3) наблюдается $T_f \approx 51$ К и $T_{MO} \approx 69$ К. Факт возрастания T_f свидетельствует об увеличении среднего диаметра ферромагнитных кластеров, что может быть следствием перераспределения вакансий кислорода. Наиболее вероятно, что возрастает доля ферромагнитных взаимодействий Mn³⁺(6)–O–Mn³⁺(6) за счет уменьшения антиферромагнитных Mn³⁺(5)–O–Mn³⁺(6).

Рис. 4. Полевая зависимость FC атомного магнитного момента при T = 6 К в условиях атмосферного давления (прямоугольники) и давления 0.93 GPa (кружки) для анион-дефицитного образца La_{0.70}Sr_{0.30}MnO_{2.85}. Светлые символы – режим уменьшения поля, темные – режим увеличения

Воздействие гидростатического давления увеличивает ферромагнитную часть анион-дефицитного La_{0.70}Sr_{0.30}MnO_{2.85}. В условиях атмосферного давления этот образец обладает спонтанным атомным магнитным моментом, равным $\sigma_S \approx 0.47 \ \mu_B/f.u.$, в то время как теоретически возможное значение при полностью параллельной ориентации спинов марганца составляет ~ 3.7 $\mu_B/f.u.$ Исходя из этих значений, можно заключить, что ферромагнитная часть образца $V_{\text{fer}} \approx 13\%$. Под давлением P = 0.93 GPa спонтанный момент возрастает до $\sigma_S \approx 0.67 \ \mu_B/f.u.$, что соответствует $V_{\text{fer}} \approx 18\%$ ферромагнитной части образца (рис. 4). Следует отметить, что под действием давления коэрцитивная сила не изменяет своего значения и остается равной $H_c \approx 1.86$ kOe.

Основными причинами усиления ферромагнетизма в анион-дефицитном $La_{0.70}Sr_{0.30}MnO_{2.85}$ под действием гидростатического давления являются: 1) перераспределение анионных вакансий, что вызывает увеличение среднего диаметра ферромагнитных кластеров и 2) уменьшение средней длины связи $\langle Mn-O \rangle$ в пределах этих кластеров.

Настоящая работа была выполнена при частичной финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (грант № Ф06Р-078) и стипендии Президента Республики Беларусь.

- 1. J.B. Goodenough, Rep. Prog. Phys. 67, 1915 (2004).
- 2. С.М. Дунаевский, ФТТ 46, 193 (2004).
- 3. С.В. Труханов, М.В. Бушинский, И.О. Троянчук, Г. Шимчак, ЖЭТФ 126, 874 (2004).
- S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Troyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Eur. Phys. J. B42, 51 (2004).

- 5. С.В. Труханов, ЖЭТФ **128**, 597 (2005).
- 6. J.M.D. Coey, M. Viret, S. Von Molnar, Adv. Phys. 48, 167 (1999).
- 7. S.V. Trukhanov, J. Mater. Chem. 13, 347 (2003).
- 8. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001).
- 9. M. Medarde, J. Mesot, P. Lacorre, S. Rosenkranz, P. Fischer, K. Gobrecht, Phys. Rev. B52, 9248 (1995).
- 10. Y. Moritomo, A. Asamitsu, Y. Tokura, Phys. Rev. B51, 16491 (1995).
- 11. Y. Moritomo, A. Asamitsu, Y. Tokura, Phys. Rev. B56, 12190 (1997).
- 12. H.Y. Hwang, T.T.M. Palstra, S-W. Cheong, B. Batlogg, Phys. Rev. B52, 15046 (1995).
- 13. D.P. Kozlenko, I.N. Goncharenko, B.N. Savenko, V.I. Voronin, J. Phys.: Condens. Matter 16, 6755 (2004).
- 14. P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S-W. Cheong, J.D. Jorgensen, D.N. Argyriou, Phys. Rev. B56, 8265 (1997).
- 15. I.M. Fita, R. Szymczak, M. Baran, V. Markovich, R. Puzniak, A. Wisniewski, S.V. Shiryaev, V.N. Varyukhin, H. Szymczak, Phys. Rev. **B68**, 014436 (2003).
- 16. S.V. Trukhanov, N.V. Kasper, I.O. Troyanchuk, M. Tovar, H. Szymczak, K. Bärner, J. Solid State Chem. 169, 85 (2002).
- 17. С.В. Труханов, И.О. Троянчук, Н.В. Пушкарев, Г. Шимчак, ЖЭТФ 122, 356 (2002).
- 18. С.В. Труханов, ЖЭТФ 127, 107 (2005).
- 19. S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak, J. Phys.: Condens. Matter 15, 1783 (2003).
- 20. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. **B51**, 14103 (1995).
- 21. С.В. Труханов, И.О. Троянчук, А.В. Труханов, И.М. Фита, А.Н. Васильев, А. Maignan, Н. Szymczak, Письма в ЖЭТФ **83**, 36 (2006).
- 22. J.B. Goodenough, A. Wold, R.J. Arnot, N. Menyuk, Phys. Rev. 124, 373 (1961).

S.V. Trukhanov, V.V. Fedotova, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, H. Szymczak

HYDROSTATIC PRESSURE EFFECT ON SPIN GLASS STATE IN MANGANITES

Chemical composition, surface morphology, crystal structure and magnetic properties of anion-deficient manganites having the perovskite structure La_{0.70}A_{0.30}MnO_{3- γ} (A = Ca, Sr, Ba; $0 \le \gamma \le 0.2$) have been investigated. With the growth in the number of oxygen vacancies ($\gamma \ge 0.15$) the ferromagnetic state of anion-deficient samples changes for the spin glass state. In the range of the applied hydrostatic pressure (0–1 GPa) the samples (A = Sr and $\gamma \ge 0.15$) are spin glasses. $T_f \approx 45$ K makes the temperature of the magnetic moment freezing, $d \approx 10$ nm is the average diameter of ferromagnetic cluster. The volume part of the sample (A = Sr and $\gamma = 0.15$) in the ferromagnetic state $V \sim 13\%$. The application of hydrostatic pressure results in T_f growth at a rate of 4.3 K/GPa, while T_{MO} (the temperature of magnetic ordering) increases at a rate of 12.9 K/GPa. Ferromagnetic part of the sample ($\Delta V_{fer} = 5\%$) increases with pressure too. The gain in ferromagnetic properties of anion-deficient manganite La_{0.70}Sr_{0.30}MnO_{2.85} under the hydrostatic pressure is a consequence of the oxygen vacancy redistribution and the decrease of unit cell parameters.

Fig. 1. Surface topography made by scanning electron microscope for an ion-deficient manganite $La_{0.70}Sr_{0.30}MnO_{2.85}$

Fig. 2. Concentration dependence of unit cell parameters *a* and *c* (*a*), angle α and unit cell volume *V*(δ) as well as length of bonds Mn–O1 and Mn–O2 (*a*) at room temperature and atmospheric pressure for anion-deficient samples of La_{0.70}Sr_{0.30}MnO_{3- γ}

Fig. 3. Temperature dependences (ZFC – light symbols, FC – dark symbols) of specific magnetization (*a*) in the field of 100 Oe and of the ZFC specific magnetization derivative (δ) for atmospheric pressure (circles) and a pressure of 0.93 GPa (rectangles) for anion-deficient sample of La_{0.70}Sr_{0.30}MnO_{2.85}

Fig. 4. Field dependence of the FC atomic magnetic moment for T = 6 K under atmospheric pressure (rectangles) and at 0.93 GPa (circles) for anion-deficient sample of La_{0.70}Sr_{0.30}MnO_{2.85}. Light symbols – mode of field decreasing, dark symbols – increasing mode