PACS: 62.20.-x

А.И. Коршунов, А.А. Смоляков, Т.Н. Кравченко, Л.В. Поляков, И.И. Каганова, И.В. Коротченкова

КАЧЕСТВО МЕХАНИЧЕСКИХ СВОЙСТВ МЕТАЛЛОВ И СПЛАВОВ ПОСЛЕ РАВНОКАНАЛЬНОГО УГЛОВОГО ПРЕССОВАНИЯ

ФГУП «Российский федеральный ядерный центр – Всероссийский научноисследовательский институт экспериментальной физики» пр. Мира, 37, г. Саров Нижегородской обл., 607190, Россия E-mail: korshun1@sar.ru

Проанализированы побочные эффекты, возникающие при равноканальном угловом прессовании (РКУП). Установлено, что РКУП, обеспечивая значительное увеличение прочностных характеристик при сохранении достаточной технологической пластичности, приводит к определенной потере качества механических характеристик. Экспериментально зафиксированы неоднородность механических характеристик по сечению заготовок, масштабный эффект, анизотропия, повышение скоростной чувствительности, снижение термостабильности, а также деградация механических свойств в процессе естественного хранения.

Введение

Равноканальное угловое прессование как один из методов интенсивной пластической деформации позволяет получить высокие прочностные характеристики для многих материалов при сохранении характеристик пластичности, достаточных для последующих технологических переделов [1]. Тем не менее существует ряд параметров, которые, характеризуя качество получаемых механических свойств, зачастую выпадают из поля зрения исследователей. К ним можно отнести такие известные параметры, как:

- неоднородность механических свойств по сечению заготовки,
- анизотропия,
- масштабный эффект механических свойств,
- увеличение скоростной чувствительности,
- снижение термостабильности,

и менее известные:

- снижение равномерной деформации,
- деградация механических свойств.

В настоящей работе приведены экспериментальные данные, позволяющие судить о влиянии РКУП на каждый из перечисленных выше параметров.

Неоднородность

Возникновение неоднородности присуще самому процессу РКУП, на что указывают результаты численного моделирования [2]. Возникающее при РКУП напряженно-деформированное состояние неоднородно как по длине, так и по сечению. Для дальнейшего анализа примем систему координат, приведенную на рис. 1.

Рис. 1. Система координат, связанная с начальной заготовкой

Рис. 2. Результаты измерения микротвердости в плоскости *XOZ* образцов из меди М1 после 8 циклов РКУП по схеме *С*

Распределение микротвердости, представленное на рис. 2, так же как и численное моделирование, указывает на значительную неоднородность в заготовке, подвергнутой РКУП. На рис. 3 приведено характерное распределение предела прочности по сечению заготовки [3]. Представленные экспериментальные данные показывают, что в центре заготовки наблюдаются наибольшие значения прочностных характеристик, которые снижаются к периферии. Характеристики пластичности, наоборот, возрастают от центра к периферии (рис. 4) [4].

Рис. 3. Распределение предела прочности меди M1 по поперечному сечению заготовки после 4 проходов РКУП по маршруту B_C

Рис. 4. Зависимости относительного удлинения δ_5 (кривая *1*), относительного сужения ψ (*2*) и истинной деформации при разрушении e_{cr} (*3*) от расстояния до центра прутка из титанового сплава Ti–6Al–4V после РКУП и экструзии

Рис. 5. Зависимость неоднородности титана BT1-0 от числа проходов для предела прочности (*a*) и условного предела текучести (δ): $-\Delta$ - – схема B_C , $-\circ$ - – схема C

Примем в качестве показателя неоднородности характеристики коэффициент вариации *V*, равный отношению стандартного отклонения к среднему значению:

$$V = \frac{S}{\overline{x}}$$
, где $S = \sqrt{\frac{n\sum x^2 - (\sum x)^2}{n(n-1)}}$, $\overline{x} = \frac{1}{n}\sum x$.

Здесь x – значение характеристики для каждого проведенного эксперимента. Зависимости показателя неоднородности для некоторых исследованных механических характеристик в зависимости от числа проходов РКУП приведены на рис. 5 [5]. Из представленных результатов следует, что неоднородность для прочностных характеристик практически во всех случаях увеличивается после первого прохода, резко падает после второго, оставаясь тем не менее выше неоднородности материала в исходном состоянии.

Анизотропия

При исследовании условного предела текучести при сжатии во всех случаях после РКУП наблюдается значительная анизотропия (рис. 6), причем как для материалов, изотропных в исходном состоянии (например, для меди), так и анизотропных (например, титана и его сплавов) [6]. Для титанового сплава Ti–6Al–4V после РКУП и экструзии отжиг снижает уровень анизотропии, но не исключает ее совсем (табл. 1). Здесь за коэффициент анизотропии взято превышение условного предела текучести в поперечном направлении по отношению к продольному.

Среди исследованных материалов титановый сплав Ti-6Al-4V после РКУП и экструзии имеет самую большую анизотропию условного предела текучести при сжатии, однако для этого же материала анизотропия при испытании на растяжение практически отсутствует для всех стандартных механических характеристик (табл. 2).

Рис. 6. Зависимость условного предела текучести меди M1 (*a*) и титана BT1-0 (*б*) при сжатии от числа проходов РКУП по маршруту B_C : \Box – направление X, $\blacksquare - Y$, $\blacksquare - Z$

Таблица 1

Значения условного предела текучести σ_{0.2} (N/mm²) при сжатии титанового сплава Ti–6Al–4V

	Вдоль оси	Поперек оси	Коэффициент	
Состояние материала	прутка	прутка	анизотропии, %	
Исходное состояние	978	1140	16.6	
РКУП + экструзия	920	1420	54.3	
РКУП + экструзия + отжиг при 500°С				
в течение 1 h	1370	1620	18.2	
в течение 2 h	1360	1560	14.7	

Таблица 2

Механические свойства при растяжении титанового сплава Ti–6Al–4V после РКУП и экструзии в зависимости от направления вырезки образцов

Ианиарнаниа рипорки	σ_b	$\sigma_{0.2}$	δ_5	Ψ	
паправление вырезки	N/mm ²		%		
Вдоль оси Х	1160	1060	9.9	53.2	
Y	1190	1030	9.9	55.3	
Z	1210	1050	9.9	56.2	

Масштабный эффект

Масштабный эффект после РКУП рассмотрим на примере титанового сплава Ti-6Al-4V [7]. Как видно из представленных на рис. 7 результатов, общая тенденция состоит в том, что масштабный эффект снижается после РКУП. Последующая экструзия устраняет масштабный эффект практически полностью.

Скоростная чувствительность

Скоростную чувствительность оценивали по коэффициенту [8]:

$$m = \frac{\lg(\sigma_{i2}/\sigma_{i1})}{\lg(\dot{\varepsilon}_2/\dot{\varepsilon}_1)},$$

где $\dot{\varepsilon}_2 > \dot{\varepsilon}_1$ – скорости деформации, $\sigma_{i2} > \sigma_{i1}$ – соответствующие этим скоростям истинные напряжения для одной и той же истинной деформации.

Зависимости коэффициента скоростной чувствительности от степени деформации для титана ВТ1-0 [9] и меди М1 [10] приведены на рис. 8. Эти результаты показывают, что скоростная чувствительность после РКУП выше, чем для материалов в исходном состоянии, а также, что коэффициент скоростной чувствительности растет с увеличением степени деформации.

Термостабильность

Термостабильность изучали многие исследователи, и общий вывод состоит в том, что материал после интенсивной пластической деформации, в том числе и после РКУП, сохраняет свои новые механические свойства до более низких температур в сравнении с исходным состоянием. На рис. 9 приведены зависимости изменения механических свойств для ультразернистой меди М0б после различных температур отжига [11]. Результаты исследований

Рис. 8. Зависимости коэффициента скоростной чувствительности для титана BT1-0 (*a*) и меди M1 (δ) в исходном состоянии (1) и после 8 циклов РКУП по схеме $B_C(2)$ от степени деформации

Рис. 9. Влияние температуры отжига на свойства меди МОб в прутке диаметром 40 mm после 12 циклов РКУП по маршруту B_C : $\blacksquare - \sigma_b$, $\Box - \sigma_{0.2}$, $\Delta - \delta_5$, $\blacktriangle - \delta_{\text{un}}$, $\nabla - \psi$

показывают наличие трех характерных зон, что согласуется с данными [12,13]. В первой зоне материал термостабилен. Затем идет зона резкого снижения прочностных свойств и повышения деформационных. В третьей зоне происходит плавное, незначительное изменение свойств.

Равномерная деформация

В большинстве исследований, посвященных влиянию РКУП на механические свойства, приводятся результаты по изменению предела прочности, предела текучести, а для характеристик пластичности – относительного удлинения и сужения. Как правило, относительное удлинение для пластичных материалов после РКУП падает до 10–15%, что может привести к ошибочному выводу о достаточной пластичности для последующих технологических и эксплуатационных целей.

Значение относительного удлинения складывается из двух составляющих: равномерной и сосредоточенной деформации. Рассмотрим влияние РКУП на относительное удлинение и равномерную деформацию на примере меди МОб

Рис. 10. Зависимость относительного удлинения (\blacklozenge) и равномерной деформации (\blacksquare) меди МОб после РКУП по маршруту B_C от числа проходов

(рис. 10). Как видно из представленных экспериментальных данных, уже после первого прохода относительное удлинение и равномерная деформация резко уменьшаются, причем значение последней устанавливается на уровне 1–2%, начиная со второго прохода. С точки зрения как технологических, так и эксплуатационных целей такого уровня равномерной деформации явно не достаточно.

Если вернуться к результатам, представленным на рис. 9, то можно увидеть, что при отжиге существует диапазон температур, в котором можно выбрать температуру отжига, обеспе-

чив при этом приемлемые значения как равномерной деформации, так и относительного удлинения при сохранении пусть и меньших, но еще достаточно высоких значений предела прочности и условного предела текучести.

Деградация механических свойств

Впервые явление деградации прочностных свойств материалов после РКУП в процессе естественного хранения было отмечено в работе [14]. В табл. 3 приведены результаты изменения механических характеристик для различных ультразернистых материалов после хранения в комнатных условиях. Во всех экспериментах в большей или меньшей степени наблюдается падение прочностных характеристик с течением времени. Представленные результаты пока еще не позволяют сделать каких-либо обобщений, но, несомненно, указывают, что деградация прочностных свойств материалов после РКУП в процессе естественного хранения имеет место.

Таблица 3

Материал	Срок хранения,	$\sigma_{0.2}$	σ_b	δ_5	Ψ
	месяцы	N/mm ²		%	
ВТ1-0, 8×8 mm, 2 прохода РКУП	4	604	640	18.2	64.1
по маршруту С	41	590	634	14.3	60.8
M1, Ø20 mm, 12 проходов РКУП	1	425	433	13.4	77.0
по маршруту В _С	31	402	412	14.9	79.2
M1, Ø40 mm, 12 проходов РКУП	1	367	410	14.2	77.9
по маршруту В _С + осадка	21	347	386	13.8	78.6

Механические свойства при растяжении после различных сроков хранения

Заключение

РКУП во всех случаях приводит к повышению прочностных свойств, таких как предел прочности и условный предел текучести, при этом пластические характеристики (относительное удлинение, относительное сужение) снижаются.

Уменьшение равномерного удлинения в процессе РКУП носит катастрофический характер. Устранить это возможно последующим отжигом с частичной потерей прочностных характеристик.

Положительными факторами процесса РКУП являются снижение масштабного эффекта и повышение скоростной чувствительности. К отрицательным факторам следует отнести увеличение неоднородности и анизотропии, а также снижение термостабильности и деградацию прочностных характеристик в процессе естественного хранения.

- 1. Р.З. Валиев, И.В. Александров, Наноструктурные материалы, полученные интенсивной пластической деформацией, Логос, Москва (2000).
- P.N. Nizovtsev, A.A. Smolyakov, A.I. Korshunov, V.P. Solovyev, Rev. Adv. Mater. Sci. 10, 479 (2005).
- 3. A.I. Korshunov, I.I. Vedernikova, L.V. Polyakov, T.N. Kravchenko, A.A. Smolyakov, V.P. Soloviev, Rev. Adv. Mater. Sci. 10, 235 (2005).
- I.P. Semenova, L.R. Saitova, G.I. Raab, A.I. Korshunov, Y.T. Zhu, T.C. Lowe, R.Z. Valiev, Mater. Sci. Forum 503–504, 757 (2006).
- 5. A.I. Korshunov, I.I. Vedernikova, L.V. Polyakov, T.N. Kravchenko, A.A. Smolyakov, V.P. Soloviev, Mater. Sci. Forum **503–504**, 693 (2006).
- A. Korshunov, I. Kaganova, L. Polyakov, T. Kravchenko, Mater. Sci. Forum 584– 586, 487 (2008).
- 7. A.I. Korshunov, I.I. Vedernikova, T.N. Kravchenko, L.V. Polyakov, I.P. Semenova, G.I. Raab, Ultrafine Grained Materials III, TMS, Warrendale, USA (2004), p. 589.
- 8. *О.А. Кайбышев*, Сверхпластичность промышленных сплавов, Металлургия, Москва (1984).
- А.И. Коршунов, И.И. Ведерникова, Л.В. Поляков, А.А. Смоляков, Т.Н. Кравченко, И.В. Коротченкова, ФТВД 16, № 4, 68 (2006).
- A. Korshunov, L. Polyakov, I. Vedernikova, T. Kravchenko, I. Korotchenkova, A. Smolyakov, V. Soloviev, Ultrafine Grained Materials IV, TMS, Warrendale, USA (2006), p. 351.
- 11. T. Kravchenko, A. Korshunov, N. Zhdanova, L. Polyakov, I. Kaganova, Mater. Sci. Forum **584–586**, 960 (2008).
- 12. P. Homola, M. Slamova, M. Karlik, J. Cizek, I. Prochazka, Mater. Sci. Forum 503– 504, 281 (2006).
- 13. И. Пышминцев, Р. Валиев, И. Александров, В. Хотинов, А. Кильмаметов, А. Попов, ФММ 92, 99 (2001).
- 14. В.Н. Чувильдеев, А.В. Нохрин, В.И. Копылов, Металлы № 3, 70 (2003).

A.I. Korshunov, A.A. Smolyakov, T.N. Kravchenko, L.V. Polyakov, I.I. Kaganova, I.V. Korotchenkova

QUALITY OF MECHANICAL PROPERTIES OF METALS AND ALLOYS AFTER THE EQUAL-CHANNEL ANGULAR PRESSING

By-effects occurring under the equal-channel angular pressing (ECAP) have been analysed. It has been determined that the ECAP provides considerable improvement of the strength properties with technological plasticity conservation, still there is a loss in the quality of mechanical characteristics. Heterogeneity of mechanical properties in the crosssection of billets, the scaling effect, the anisotropy, the increase of rate sensitivity, the decrease of thermal stability, as well as the degradation of mechanical properties during storage have been experimentally fixed.

Fig. 1. Initial billet's coordinate system

Fig. 2. Results of microhardness measurements in the *XOZ*-plane of copper M1 samples past 8 ECAP cycles according to scheme *C*

Fig. 3. Distribution of copper M1 ultimate strength over billet's cross-section after 4 ECAP passes by route B_C

Fig. 4. Dependences of elongation δ_5 (curve *1*), reduction of area ψ (*2*) and fracture strain e_{cr} (*3*) on distance to Ti–6Al–4V rod centre after ECAP and extrusion

Fig. 5. Dependence of titanium BT1-0 heterogeneity on number of passes for ultimate strength (*a*) and conventional yield strength (δ): $-\Delta$ - - route B_C , $-\circ$ - - scheme C

Fig. 6. Dependence of conventional yield strength of copper M1 (*a*) and titanium BT1-0 (δ), during compression, on the number of ECAP passes by route B_C : \Box – direction X, $\blacksquare - Y$, $\blacksquare - Z$

Fig. 7. Deformation diagrams for different states of alloy Ti–6Al–4V: initial (*a*), ECAP (δ), ECAP + extrusion (*e*). Numerals stand for values of tested sample diameter

Fig. 8. Dependences of rate sensitivity factor for titanium BT1-0 (*a*) and copper M1 (δ) in initial state (*I*) and past 8 ECAP cycles by scheme $B_C(2)$ on deformation degree

Fig. 9. Influence of annealing temperature on properties of copper M06 in a 40 mmdiameter rod past 12 ECAP cycles by route B_C : $\blacksquare - \sigma_b$, $\Box - \sigma_{0,2}$, $\Delta - \delta_5$, $\blacktriangle - \delta_{un}$, $\nabla - \psi$

Fig. 10. Dependence of elongation (\blacklozenge) and uniform deformation (\blacksquare) of copper M06 after ECAP by route *B*_{*C*} on the number of passes