PACS: 81.20.Ev

Н.В. Новиков, Г.П. Богатырева, Г.Д. Ильницкая, Г.Ф. Невструев, Г.А. Петасюк, В.Н. Ткач, Р.К. Богданов, А.М. Исонкин, А.П. Закора, И.Н. Зайцева

ВКЛЮЧЕНИЯ В КРИСТАЛЛАХ СИНТЕТИЧЕСКИХ АЛМАЗНЫХ ВЫСОКОПРОЧНЫХ ПОРОШКОВ

Институт сверхтвердых материалов им. В.Н. Бакуля НАН Украины ул. Автозаводская, 2, г. Киев, 04074, Украина E-mail: bogatyreva@ism.kiev.ua

Изучены содержание внутрикристаллических включений и их элементный состав в алмазных высокопрочных шлифпорошках, синтезированных с использованием Fe– Ni в качестве сплава-растворителя. Качественные исследования выполнены на приборе DiaInspect.OSM, количественное содержание и элементный состав включений в порошках алмаза измерены методом рентгенофлуоресцентного интегрального анализа с использованием растрового электронного микроскопа BS-340.

Введение

Кристаллы синтетических алмазов образуются при высоких давлениях и температурах в присутствии сплавов переходных металлов. В процессе роста кристалл алмаза захватывает в виде включений и примесей все побочные фазы, присутствующие в реакционной камере. При этом включения и примеси становятся объемными дефектами и оказывают непосредственное влияние на прочностные характеристики порошков. Известно, что при нестабильных условиях синтеза за один цикл в реакционном объеме получают зерна алмаза различного размера и с различным содержанием внутрикристаллических металлических включений сплава-растворителя [1]. Как правило, реальный кристалл алмаза отличается от соответствующей идеальной структуры наличием дефектов от точечных до объемных. Структура реального кристаллического материала представляет собой блоки кристаллической решетки, соединенные друг с другом. В промежутках между блоками находятся трещины, посторонние включения, примеси, а в самих блоках – дислокации, вакансии и прочие образования, которые снижают прочностные характеристики кристаллов [2]. Количество и характер дефектов являются функцией способа и условий получения кристаллов. В результате совершенствования процесса синтеза рядом ведущих зарубежных фирм получены алмазы с очень высокой прочностью, из которых могут быть изготовлены алмазные порошки марок AC200–AC400 [3].

Методы исследования

Для исследования были выбраны алмазные шлифпорошки зернистостью 400/315 марки АС200, из которых изготовили три образца (№ 1, 2 и 3), различающиеся по содержанию в них внутрикристаллических включений β [4]. Все образцы подвергали термохимической обработке – сначала при 1000°C в инертной среде, а затем химической в минеральных кислотах. В образцах алмаза было изучено содержание внутрикристаллических включений и их элементный состав до и после термохимической обработки. Качественный анализ по включениям в алмазных шлифпорошках выполняли на приборе DiaInspect.OSM [5]. Для исследований были отобраны отдельные пробы от алмазных шлифпорошков образцов № 1 и 3 до и после термохимической обработки (всего 4 пробы-навески). Содержание и элементный состав включений в порошках алмаза измеряли методом рентгенофлуоресцентного интегрального анализа с использованием растрового электронного микроскопа BS-340 и энергодисперсного анализатора рентгеновских спектров Link-860 [6]. Прочность порошков определяли по разрушающей нагрузке до (P, N) и после термохимической обработки (P_{TXO}, N) [7,8]. Согласно ДСТУ 3292–95 [8] прочность порошков алмаза определяется по значению статической нагрузки, разрушающей алмазные зерна, помещенные между двумя параллельными пластинами, в ньютонах.

Результаты и обсуждение

На приборе DiaInspect.OSM был выполнен качественный анализ алмазных шлифпорошков. На рис. 1 представлены фотографии образцов № 1 и 3 до и после термохимической обработки. Как видно из рисунка, кристаллы алмаза образца № 1 имеют гладкие поверхности граней и являются более прозрачными по сравнению с кристаллами образца № 3. Кристаллы образцов № 1 и 3 до термохимической обработки более прозрачны, чем после нее.

Функциональные возможности прибора DiaInspect.OSM с использованием просвечивающей оптической микроскопии позволяют проводить визуальный анализ включений. Процедура визуализации сводится к следующему. Фокусируется и фиксируется как стартовый самый верхний уровень кристалла. Затем в фокус вводится и фиксируется самый нижний конечный его уровень. Задаются мультифокусные установочные параметры, которые касаются количества уровней сканирования между начальной и конечной точками и точной настройки вычислительных функций. Сразу же в цифровом виде отображаются начальная и конечная высоты, а также ширина шага между уровнями высоты. После этого выполняется процедура многократной фокусировки, результатом наложения отдельных ее картинок есть общая картина мультифокусного изображения.

Рис. 1. Изображения образцов № 1 и 3 до (а) и после (б) термохимической очистки

Возможности прибора DiaInspect.OSM позволили зафиксировать в отдельных кристаллах алмаза включения. Так, на рис. 2 показаны отдельные кристаллы алмаза: прозрачный исходный (*a*) и термохимически обработанный (δ). При этом в прозрачном исходном кристалле зафиксированы включения во всем его объеме, на менее прозрачных кристаллах алмаза, в основном после термохимической обработки, визуализируются преимущественно поверхностные включения. После просмотра большого количества кристаллов алмаза и на основании визуального сравнения можно сделать вывод, что после термохимической обработки их прозрачность заметно снижается.

В образцах алмаза были определены количественное содержание включений и их элементный состав (табл. 1). Как видно из таблицы, состав включений в образцах в основном представлен элементами сплава-растворителя железа и никеля.

Физика и техника высоких давлений 2009, том 19, № 2

Рис. 2. Кристаллы алмаза до (а) и после (б) термохимической очистки

Таблица 1

Элементный состав включений в алмазных шлифпорошках до и после термической обработки

N⁰		Элементный состав, %										
образца	Mg	Al	Ca	Ti	Fe	Со	Ni	Mn	Cu			
До термической обработки												
1		_	0.015		0.161	0.016	0.114	0.003	0.022			
2		_	0.026		0.212	0.031	0.124	0.007	0.039			
3	0.014	0.060	0.040	0.016	0.222	0.058	0.139	0.010	0.058			
После термической обработки												
1		—			0.141	_	0.093	0.001	—			
2		—	0.020		0.154	_	0.103	0.005	0.031			
3	_	0.022	0.029	_	0.183	_	0.106	0.008	0.044			

Таблица 2

Содержание примесей и включений в алмазных шлифпорошках до и после термохимической обработки

№ об- разца		До обработки		После обработки			
	<i>P</i> , N	содержание и включений	примесей й, mass%	DN	содержание примесей и включений, mass%		
		сплава- растворителя	общее	$P_{\rm TXO}$, N	сплава- растворителя	общее	
1	414.2	0.275	0.331	383.5	0.234	0.235	
2	358.0	0.336	0.439	289.1	0.257	0.313	
3	305.5	0.361	0.617	198.0	0.289	0.392	

Общее содержание включений и элементов сплава-растворителя в кристаллах алмаза, а также прочность порошков до и после термохимической обработки приведены в табл. 2. Из таблицы следует, что общее содержание включений в кристаллах алмаза до термохимической обработки находится на уровне 0.331–0.617 mass%, а после обработки – на уровне 0.235–0.392 mass%. При этом состав

Рис. 3. Зависимость прочности алмазов P от содержания включений β образцов \mathbb{N} 1, 2 и 3: I – до термообработки; 2 – после термообработки

617 mass%, а после обработки – на уровне 0.235–0.392 mass%. При этом состав включений представлен в основном элементами сплава-растворителя Fe и Ni в количестве от 58.5 до 83%. После высокотемпературной обработки в инертной среде и последующей химической обработки содержание внутрикристаллических металлических включений в кристаллах алмаза снижается примерно на 30%.

Проведенная специальная сортировка высокопрочных порошков марки AC200, разработанная в ИСМ

НАН Украины, позволила получить порошки алмаза, различающиеся между собой по содержанию в них внутрикристаллических включений до 2 раз и по прочности – в 1.7 раза (рис. 3). После отделения зерен алмаза с высоким содержанием включений прочность алмазных порошков, подвергнутых высокотемпературным воздействиям, возрастает на 20%.

Показатели бурения гранита коронками, оснащенными шлифпорошками алмаза с содержанием внутрикристаллических включений на уровне 0.3–0.4 mass%, полученными в результате сортировки, на 20–30% превосходят аналогичные показатели работы бурового инструмента, оснащенного исходными порошками.

Выводы

1. Экспериментально установлено, что на приборе DiaInspect.OSM возможно проведение качественного анализа по включениям в образцах алмаза – визуально. Показано, что если кристалл алмаза прозрачный, то фиксируются включения во всем его объеме, на менее прозрачных кристаллах, в основном после термохимической обработки, визуализируются преимущественно поверхностные включения.

2. В результате проведенных исследований установлено, что общее содержание включений в кристаллах алмаза до термохимической обработки находится на уровне 0.331–0.617 mass%, а после – на уровне 0.235–0.392 mass%. При этом состав включений в кристаллах алмаза представлен в основном элементами сплава-растворителя Fe и Ni в количестве от 58.5 до 83%.

^{1.} М.В. Новіков, Сучасне матеріалознавство XXI сторіччя, Наукова думка, Киев (1998).

^{2.} Г.Б. Бокий, Г.Н. Безруков, Ю.А. Клюев, А.М. Налетов, В.И. Непша, Природные и синтетические алмазы, Наука, Москва (1986).

Физика и техника высоких давлений 2009, том 19, № 2

- 3. *Н.В. Новиков, Г.П. Богатырева, Р.К. Богданов и др.*, Породоразрушающий и металлообрабатывающий инструмент техника и технология его изготовления и применения **10**, 160 (2007).
- 4. *М.В. Новіков, Г.П. Богатирьова, Г.Ф. Нєвструєв, Г.Д. Ільницька*, Деклараційний пат. 20031211734 України, 69948 А, МКИ В 24 D 3/00. Шліфувальний порошок і спосіб його одержання, Заявл. 16.12.2003, Опубл. 15.09.04, Бюл. № 9.
- 5. E. List, J. Frenzel, H. Vollstadt, Industrial diamond review 1, 42 (2006).
- 6. Растровая электронная микроскопия и рентгеновский микроанализатор, Мир, Москва (1979).
- ТУУ 28.4-05417344-2003. Шлифпорошки синтетических алмазов марок AC200, AC250, AC300, AC350, AC400. Технические условия. Госстандарт Украины, Киев (2003).
- 8. *ДСТУ 3292–95*. Порошки алмазные синтетические, Госстандарт Украины, Киев (1996).

М.В. Новіков, Г.П. Богатирьова, Г.Д. Ільницька, Г.Ф. Невструєв, Г.А. Петасюк, В.Н. Ткач, Р.К. Богданов, А.М. Ісонкін, А.П. Закора, І.Н. Зайцева

ВКЛЮЧЕННЯ В КРИСТАЛАХ СИНТЕТИЧНИХ ДІАМАНТОВИХ ВИСОКОМІЦНИХ ПОРОШКІВ

Вивчено вміст внутрішньокристалічних включень і їх елементний склад в діамантових високоміцних шліфпорошках, синтезованих з використанням Fe–Ni у якості сплаву-розчинника. Виконано якісні і кількісні дослідження вмісту включень в кристалах алмазу. Якісні дослідження включень в діамантових шліфпорошках виконано на приладі Diainspect.OSM. Кількісний вміст і елементний склад включень у порошках діаманту зміряно методом рентгенофлуоресцентного інтегрального аналізу з використанням растрового електронного мікроскопа BS-340.

N.V. Novikov, G.P. Bogatyreva, G.D. Ilnitskaya, G.F. Nevstruev, G.A. Petasjuk, V.N. Tkach, R.K. Bogdanov, A.M. Isonkin, A.P. Zakora, I.N. Zaitseva

INCLUSIONS IN CRYSTALS OF SYNTHETIC DIAMOND HIGH-STRENGTH POWDERS

The results of study of intracrystalline inclusion content and the element composition in diamond high-strength grinding powders synthesized in the presence of alloy – solvent Fe–Ni are presented. Qualitative analysis has been carried out by device DiaIn-spect.OSM, quantitative content and element composition of inclusions in diamond powders have been determined by X-ray fluorescence integral analysis using a scanning electron microscope BS-340.

Fig. 1. Images of samples \mathbb{N} 1 and 3 before (*a*) and after (δ) thermochemical cleaning

Fig. 2. Crystals of diamond before (a) and after (δ) thermochemical cleaning

Fig. 3. Dependence of the strength of diamonds *P* on inclusion content β of samples No 1, 2 and 3: *I* – before thermochemical cleaning, *2* – after thermochemical cleaning