PACS: 75.47.Gk, 75.47.Lx, 75.75.+a

А.Г. Сильчева¹, А.В. Пащенко², В.П. Пащенко^{1,2}, В.К. Прокопенко², Ю.Ф. Ревенко², А.А. Шемяков², В.А. Турченко², Ю.М. Гуфан³

СТРУКТУРА, ФАЗОВЫЕ ПЕРЕХОДЫ, МАГНИТНЫЕ И ТРАНСПОРТНЫЕ СВОЙСТВА МАНГАНИТ-ЛАНТАНОВЫХ ПЕРОВСКИТОВ La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3±δ}

¹Луганский национальный университет им. Т. Шевченко ул. Оборонная, 2, г. Луганск, 91011, Украина

²Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: alpash@mail.ru

³Южный федеральный университет, НИИ физики пр. Стачки, 194, г. Ростов-на-Дону, 344090, Россия E-mail: gufan_gufan@mail.ru

Статья поступила в редакцию 29 декабря 2009 года

Рентгеноструктурными, резистивными, магнитными (χ , *ЯМР* ⁵⁵*Мп*) и магниторезистивными (*MR*) исследованиями керамики $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ (x = 0-0.20), спеченной при $t_{ann} = 1350$ °C, установлены закономерности влияния величины x на структуру, фазовые переходы и *MR*-свойства. Широкие асимметричные спектры *ЯМР* ⁵⁵*Mn* свидетельствуют о высокочастотном электронно-дырочном обмене между ионами $Mn^{3+} \leftrightarrow Mn^{4+}$ и неоднородности их окружения другими ионами и дефектами. Замещение сверхстехиометрического марганца приводит к частичной локализации ионов Mn^{4+} . Уменьшение T_c , T_{ms} и увеличение энергии активации с ростом x связаны с нарушением ионами Fe высокочастотного электронного обмена между Mn^{3+} и Mn^{4+} . *Аномальный гистерезис \chi объяснен однонаправленной обменной анизотропией между* магнитными моментами ферромагнитной матрицы и антиферромагнитного наноструктурного кластера. *MR*-эффект вблизи фазовых переходов обусловлен рассеянием на внутрикристаллитных неоднородностях, а в низкотемпературной области – туннелированием на межкристаллитных мезоструктурных неоднородностях.

Ключевые слова: манганит-лантановые перовскиты, дефектность структуры, фазовые переходы, магниторезистивный эффект, аномальный гистерезис

1. Введение

Сложные марганецсодержащие оксиды со структурой перовскита в последнее время являются объектами интенсивных научных исследований. Неослабе-

© А.Г. Сильчева, А.В. Пащенко, В.П. Пащенко В.К. Прокопенко, Ю.Ф. Ревенко, А.А. Шемяков, В.А. Турченко, Ю.М. Гуфан, 2010

вающий интерес к редкоземельным манганитам [1–4] связан с дискуссионностью природы колоссального магниторезистивного эффекта (CMR), наблюдаемого в этих металлооксидах при T_p вблизи фазовых переходов ферро–парамагнетик (T_c) и металл–полупроводник (T_{ms}). Проявление эффекта CMR в магнитных полупроводниках при комнатной температуре делает их перспективными функциональными материалами с точки зрения практического применения [5–7].

Многочисленные исследования манганит-лантановых перовскитов по влиянию замещения в *A*-подрешетке различными ионами Ca²⁺, Sr²⁺, Pb²⁺, Ba²⁺ [8–10] показали, что максимальными температурами фазовых переходов T_c и T_{ms} обладают указанные перовскиты, допированные ионами Sr. На температуры фазовых переходов и MR-эффект влияет допирование в *A*-подрешетке и замещения в *B*-подрешетке, в частности, сверхстехиометрическим марганцем [11], Cr [12] и Co [13]. Сверхстехиометрический марганец, растворяясь в матричной перовскитовой структуре и образуя наноструктурные кластеры, способствует повышению CMR и стабилизации T_p [11,14,15].

Поэтому комплексные исследования влияния замещения сверхстехиометрического марганца в *B*-подрешетке ионами переходных металлов, особенно ${\rm Fe}^{3+}$, на структуру, резистивные, магнитные и магниторезистивные свойства лантан-стронциевых манганитоперовскитов представляются актуальными.

2. Объекты и методы исследований

Объектами исследований являлись керамические образцы, полученные из заданных порошковых смесей La(OH)₃, Mn₃O₄, SrCO₃ и α -Fe₂O₃. После синтезирующего отжига при 900 (20 h) и 950°C (22 h) образцы были спечены в виде прессовок при оптимальной температуре 1350°C (3.5 h). Получены и исследованы керамические образцы La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3± δ} c x = 0, 0.02, 0.05, 0.10, 0.15, 0.20.

Исследования проводили следующими методами:

 – рентгеноструктурным в Си-излучении на установке ДРОН-3 – для определения фазового состава, типа структуры и ее параметров;

 термогравиметрическим – для установления относительных изменений массы и содержания кислорода при спекании образцов;

– магнитным – для определения температурных зависимостей магнитной восприимчивости χ_{ac} в слабом поле (H = 0.1 Oe) при f = 600 Hz с пересчетом на абсолютную дифференциальную восприимчивость $4\pi N\chi_a$, определения T_c и построения диаграммы магнитного фазового состояния;

 – ЯМР ⁵⁵Мп методом «спин-эхо» при 77 К – для установления локальных магнитных и валентных состояний ионов марганца и неэквивалентности их окружения другими ионами и вакансиями;

– четырехконтактным резистивным и магниторезистивным – для определения удельного сопротивления и магниторезистивного эффекта MR = $\Delta R/R_0 = (R_0 - R_H)/R_0$ (сопротивление R_0 – при H = 0 и R_H – при H = 5 kOe) в интервале температур 77–400 К.

3. Результаты и их обсуждение

3.1. Структурные исследования

Согласно рентгеноструктурным данным керамические образцы были близки к однофазным и содержали ромбоэдрически ($R\overline{3}c$) искаженную перовскитовую структуру и следы (< 5%) тетрагональной фазы Mn₃O₄. Степень ромбоэдрического искажения, характеризуемая углом α , практически не изменялась ($\alpha = 90.43-90.45^{\circ}$).

Рис. 1. Концентрационные зависимости параметра решетки *a* и объема *V* элементарной ячейки керамики $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$)

На рис. 1 приведены концентрационные зависимости параметра перовскитовой структуры *а* и объема *V* элементарной ячейки. С ростом *x* параметр *a* слабо увеличивается от 7.770 (x = 0) до 7.778 Å (x = 0.2). Для объяснения таких структурных изменений использовали сопоставление относительных концентрационных изменений $\Delta a/a_0$ и средних ионных радиусов $\Delta r/r_0$ элементарной ячейки реальной перовскитовой структуры. Усредненный ионный радиус \overline{r} [16] рассчитывали из молярных формул реальной перовскитовой структуры, дефектность которой и молярные формулы определяли, учитывая механизм дефектообразования [11,17]. Этот механизм заключается в суперпозиции разновалентных ионов марганца $2Mn^{3+} \rightarrow Mn^{3+} + Mn^{4+}_{0.50} + Mn^{2+}_{0.50}$ и циклических изменениях их валентности при нагреве ($Mn^{4+} \rightarrow Mn^{3+} \rightarrow Mn^{2+}$) и охлаждении ($Mn^{2+} \rightarrow Mn^{3+} \rightarrow Mn^{3+}$ \rightarrow Mn⁴⁺), когда при высоких температурах образуются анионные $V^{(a)}$, а при охлаждении – катионные V^(c) вакансии. Сверхстехиометрический марганец при этом формирует наноструктурные кластеры, содержащие ${\rm Mn}^{2+}$ в A-позициях с нарушением анионными вакансиями координационного числа (k = 8). Молярные формулы реальной перовскитовой структуры приведены в таблице.

Хорошее согласование характера изменений $\Delta a/a_0$ и $\Delta r/r_0$ свидетельствует о правильности наших представлений о дефектности перовскитовой структуры, содержащей катионные $V^{(c)}$ и анионные $V^{(a)}$ вакансии и наноструктурные неоднородности кластерного типа.

Таблица

x	Молярные формулы перовскитоподобных твердых растворов	\overline{r} , Å
0	$\left\{ \mathrm{La}_{0.57}^{3+} \mathrm{Sr}_{0.19}^{2+} V_{0.15}^{(c)} (\mathrm{Mn}_{0.09}^{2+})_{\mathrm{cl}} \right\}_{A} \left[\mathrm{Mn}_{0.74}^{3+} \mathrm{Mn}_{0.26}^{4+} \right]_{B} \mathrm{O}_{2.75}^{2-} V_{0.25}^{(a)}$	1.198
0.05	$\left\{ La_{0.57}^{3+} Sr_{0.19}^{2+} V_{0.15}^{(c)} (Mn_{0.09}^{2+})_{cl} \right\}_{A} \left[Mn_{0.70}^{3+} Mn_{0.25}^{4+} Fe_{0.03}^{3+} Fe_{0.02}^{2+} \right]_{B} O_{2.75}^{2-} V_{0.25}^{(a)}$	1.199
0.10	$\left\{ La_{0.57}^{3+} Sr_{0.19}^{2+} V_{0.15}^{(c)} (Mn_{0.09}^{2+})_{cl} \right\}_{A} \left[Mn_{0.64}^{3+} Mn_{0.27}^{4+} Fe_{0.05}^{3+} Fe_{0.04}^{2+} \right]_{B} O_{2.75}^{2-} V_{0.25}^{(a)}$	1.200
0.15	$\left\{ La_{0.57}^{3+} Sr_{0.19}^{2+} V_{0.15}^{(c)} (Mn_{0.09}^{2+})_{cl} \right\}_{A} \left[Mn_{0.56}^{3+} Mn_{0.30}^{4+} Fe_{0.07}^{3+} Fe_{0.07}^{2+} \right]_{B} O_{2.75}^{2-} V_{0.25}^{(a)}$	1.201
0.20	$\left\{ La_{0.57}^{3+} Sr_{0.19}^{2+} V_{0.15}^{(c)} (Mn_{0.09}^{2+})_{cl} \right\}_{A} \left[Mn_{0.45}^{3+} Mn_{0.36}^{4+} Fe_{0.06}^{3+} Fe_{0.13}^{2+} \right]_{B} O_{2.75}^{2-} V_{0.25}^{(a)}$	1.201

Молярные формулы дефектной перовскитовой структуры керамики $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$)

3.2. Магнитные свойства

На рис. 2 приведены температурные зависимости абсолютных значений дифференциальной магнитной восприимчивости манганит-лантановой ке-

Рис. 2. Температурные зависимости абсолютной дифференциальной магнитной восприимчивости керамики La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3± δ} ($t_{ann} = 1350^{\circ}$ C): $-\Delta - - x = 0, -\Box - - 0.05, -\bullet - - 0.10, -\circ - - 0.15, -\bullet - - 0.20$

рамики. Калибровку проводили с учетом размагничивающего фактора *N* образцов на ферромагнитном никеле. С увеличением х значительно понижается температура фазового перехода ферро-парамагнетик Т_с от 356 (x = 0) до 180 К (x = 0.2) и повышается магнитная неоднородность ΔT_c от 47 (x = 0) до 136 K (x = 0.2) вследствие ослабления ионами Fe³⁺ высокочастотного электронно-дырочного обмена между $Mn^{3+} \leftrightarrow Mn^{4+}$ и изменения их соотношения (таблица). При этом доля ферромагнитной фазы находится в интервале 80-95%, максимальные ее значения характерны для x = 0.15.

Особый интерес представляет аномальный гистерезис χ_{ac} , наблюдаемый в слабых магнитных полях ($H \sim 70$ Oe) (рис. 3), который связан с однонаправленной обменной анизотропией взаимодействия между магнитными моментами ферромагнитной матрицы и антиферромагнитного наноструктурного кластера [17–19].

Информацию о локальных магнитных и валентных состояниях ионов марганца, находящихся в высокочастотном электронно-дырочном обмене, характеризуют спектры ЯМР^{55} Mn (рис. 4). С повышением *x* уменьшается

Рис. 3. Аномальный гистерезис магнитной восприимчивости при 77 К в слабых полях керамики $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$): a - x = 0, $\delta - 0.05$, B - 0.10, c - 0.15, $\partial - 0.20$

Рис. 4. Спектры ЯМР ⁵⁵Мп при 77 К керамики La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3±δ} ($t_{ann} = 1350^{\circ}$ C): I - x = 0.02, 2 - 0.07, 3 - 0.10, 4 - 0.15

основная резонансная частота, увеличивается ширина спектра и его асимметрия, особенно в низкочастотную область. Широкие асимметричные спектры свидетельствуют о высокочастотном электронно-дырочном обмене в *B*-позициях между ионами $Mn^{3+} \leftrightarrow Mn^{4+}$ и неоднородности их окружения другими ионами и дефектами. Появление в области пониженных частот сателлитных уширений подтверждает частичную локализацию ионов Mn^{4+} , вблизи которых из принципа электронейтральности должны находиться ионы Sr^{2+} и катионные вакансии.

3.3. Резистивные свойства

О наличии фазового перехода металл–полупроводник свидетельствует температурная зависимость удельного сопротивления ρ_0 керамических образцов (рис. 5), температура T_{ms} которого аналогично T_c понижается от 383 (x = 0.02) до 163 К (x = 0.15). Для x = 0 полупроводниковая область сглажена, и падение ρ_0 при росте температуры выше T_{ms} практически отсутствует. Это, возможно, связано с определенной концентрацией вакансий и соотношением Mn³⁺/Mn⁴⁺. Независимость ρ_0 от температуры в этом интервале обусловлена, по-видимому, компенсирующим влиянием двух конкурирующих механизмов электропроводности – металлического и полупроводникового, что наблюдается при определенном соотношении Mn³⁺/Mn⁴⁺, т.е. при определенном соотношении концентраций электронов и дырок, способных образовывать при взаимодействии поляроны.

Рис. 5. Температурная зависимость удельного сопротивления керамики $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$): $-\Delta - -x = 0$, $-\Box - 0.05$, $-\bullet - 0.10$, $-\circ - 0.15$, $-\bullet - 0.20$

Рис. 6. Концентрационные зависимости энергии активации для керамики $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$): – – – активационный процесс, – – – активационный процесс диффузионного типа

Повышение содержания Fe^{3+} , замещающего Mn^{3+} (таблица), приводит к росту ρ_0 при T_p в 10 раз вследствие как изменения соотношения $\text{Mn}^{3+}/\text{Mn}^{4+}$, так и нарушения высокочастотного электронно-дырочного обмена между ними ионами Fe^{3+} .

Ценную информацию для выяснения механизма электропроводности и дефектности структуры представляет энергия активации E_a [20,21], определенная для полупроводниковой области температур из уравнения обычного активационного процесса $\rho = \rho_0 \exp(E_a/kT)$ (кривая *l* на рис. 6) и для активационного процесса диффузионного типа $\rho = (kT)/ne^2 D \exp(E_a/kT)$, где $D = a^2 v$ – коэффициент диффузии, *e* и *n* – заряд и его концентрация соответственно (кривая 2).

Увеличение энергии активации при замещении сверхстехиометрического марганца ионами железа (рис. 6) вызвано ослаблением ионами Fe³⁺ высокочастотного электронно-дырочного обмена $Mn^{3+} \leftrightarrow Mn^{4+}$ и повышением степени локализации носителей заряда, в частности для Mn^{4+} , что видно из $MMP^{55}Mn$ (см. рис. 4).

3.4. Магниторезистивные свойства

Поскольку манганит-лантановые перовскиты представляют непосредственный интерес как магниторезистивные материалы, на рис. 7 приведены температурные зависимости MR для образцов различных составов. Как и для большинства керамических манганитоперовскитов [22–24], наблюдается два типа MR-эффекта:

Рис. 7. Температурная зависимость магниторезистивного эффекта (H = 5 kOe) керамики La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3±δ} ($t_{ann} = 1350^{\circ}$ C): $-\Delta - -x = 0$, $-\Box - -0.05$, $-\bullet - -0.10$, $-\circ - -0.15$, $-\bullet - -0.20$

Рис. 8. Фазовая диаграмма $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$) (PM, FM – соответственно парамагнитное и ферромагнитное состояния

1) вблизи температур фазовых переходов T_c и T_{ms} – это T_p (пик MR), связан с рассеянием носителей зарядов на внутрикристаллитных неоднородностях;

2) в низкотемпературной области (туннельного типа), обусловлен рассеянием на мезоструктурных межкристаллитных границах, величина которого значительно превышает первый.

В керамике величина MR-эффекта первого типа может превышать величину MR-эффекта второго типа.

Температура пика MR-эффекта, наблюдаемая вблизи фазовых переходов, аналогично температурам T_c и T_{ms} понижается с увеличением степени замещения сверхстехиометрического марганца ионами железа от 353 (x = 0) до 202 К (x = 0.15).

Отдельный интерес представляет магнитная фазовая диаграмма (рис. 8), которая построена на основе анализа температурной зависимости χ_{ac} . Из этой диаграммы видно, что установление дальнего магнитного порядка происходит через область, в которой устанавливается ближний магнитный порядок. Максимальную скорость упорядочения магнитного момента (штриховая линия на фазовых диаграммах) характеризует точка перегиба внутри интервала ΔT_c , который соответствует магнитной неоднородности. Следует отметить, что температура пика MR-эффекта T_p хорошо совпадает с температурой, соответствующей максимальной скорости магнитного упорядочения.

Расширение температурного интервала перехода из ферро- в парамагнитное состояние (магнитная неоднородность) связано, по-видимому, не только со структурной неоднородностью (анионные, катионные вакансии и наноструктурные кластеры), но и плоскостным магнитным расслоением перовскитовой решетки.

4. Заключение

На основании комплексных исследований влияния замещений сверхстехиометрического марганца ионами железа в манганит-лантановой керамике $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ (x = 0-0.20), спеченной при 1350°C, сделаны следующие выводы.

Образцы содержат ромбоэдрическую $R\overline{3}c$ перовскитовую фазу, параметры решетки которой слабо увеличиваются при повышении *x*, что связано с равенством ионных радиусов Mn³⁺ (r = 0.785 Å) и Fe³⁺ (0.785 Å) и большим ионным радиусом Fe²⁺ (0.92 Å). Согласование характера и величин относительных изменений $\Delta a/a_0$ и $\Delta r/r_0$ получено для дефектной перовскитовой структуры, содержащей анионные, катионные вакансии и наноструктурные кластеры, образованные ионами Mn²⁺ в *B*-позициях и Mn⁴⁺ в *A*-позициях.

Замещение сверхстехиометрического марганца ионами Fe в *B*-позициях до x = 0.15 приводит к увеличению удельного сопротивления ρ и значительному понижению температур фазовых переходов металл–полупроводник T_{ms} , ферро–парамагнетик T_c и пика магниторезистивного эффекта T_p вследствие нарушения обменного взаимодействия $Mn^{3+} \leftrightarrow Mn^{4+}$. Резкое уменьшение ρ для x = 0.2, возможно, связано с повышением проводимости за счет высокочастотного обмена Fe³⁺ \leftrightarrow Fe²⁺.

Аномальный гистерезис χ объяснен однонаправленной анизотропией обменного взаимодействия между магнитными моментами ослабленной дефектами ферромагнитной матрицы и антиферромагнитного наноструктурного кластера.

Широкие асимметричные спектры ЯМР ⁵⁵Мп свидетельствуют о высокочастотном электронно-дырочном обмене в *B*-позициях между $Mn^{3+} \leftrightarrow Mn^{4+}$ и неоднородности их окружения другими ионами и дефектами. Замещение сверхстехиометрического марганца ионами железа приводит к частичной локализации ионов Mn^{4+} вследствие повышения их концентрации и нарушения высокочастотного электронного обмена с Mn^{3+} .

Увеличение энергии активации вызвано ослаблением высокочастотного электронно-дырочного обмена ${\rm Mn}^{3+} \leftrightarrow {\rm Mn}^{4+}$ и повышением степени локализации носителей заряда.

Величина низкотемпературного MR-эффекта туннельного типа, обусловленного рассеянием на мезоструктурных межкристаллитных границах, превосходит величину MR-эффекта вблизи температур фазовых переходов, связанную с рассеянием на внутрикристаллитных наноструктурных неоднородностях дефектной перовскитовой структуры.

- 1. D.M. Edwards, Adv. Phys. 51, 1259 (2002).
- 2. E.L. Nagaev, Phys. Rep. 346, 387 (2001).
- 3. E. Dagotto, J. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001).
- 4. М.Ю. Каган, К.И. Кугель, УФН 171, 577 (2001).
- 5. M. Machida, N. Hauachi, Y. Yoneda et al., J. Magn. Magn. Mater. 226–230, 2054 (2001).
- 6. В.П. Пащенко, М.І. Носанов, О.А. Шемяков и др., Патент на винахід, UA 45153A, Бюл. № 3 (2003).
- 7. S. Valencia, Li. Balcells, B. Martiner et al., J. Appl. Phys. 93, 8059 (2003).
- J.C. Loudon, S. Cox, A.J. Willims, J.P. Attfield, P.B. Littlewood, P.A. Midgley, N.D. Mathur, Phys. Rev. Lett. 94, 097202 (2005).
- 9. P. Mandal, B. Ghosh, Phys. Rev. B68, 014422 (2003).
- 10. L.K. Leung, A.H. Morrish, Phys. Rev. B15, 2485 (1977).
- 11. В.П. Пащенко, С.И. Харцев, О.П. Черенков, А.А. Шемяков, З.А. Самойленко, А.Д. Лойко, В.И. Каменев, Неорган. материалы **35**, 1509 (1999).
- V. Dyakonov, I. Fita, E. Zubov, V. Pashchenko, V. Mikhaylov, V. Prokopenko, M. Arciszewska, Yu. Bukhantsev, W. Dobrowolski, A. Nabialek, H. Szymczak, J. Magn. Magn. Mater. 246, 40 (2002).
- 13. А.В. Пащенко, В.П. Пащенко, А.А. Шемяков, Н.Г. Кисель, В.К. Прокопенко, Ю.Ф. Ревенко, А.Г. Сильчева, В.П. Дьяконов, Г. Шимчак, ФТТ **50**, 1257 (2008).
- 14. В.П. Пащенко, А.В. Пащенко, А.Г. Сильчева, В.К. Прокопенко, Ю.Ф. Ревенко, В.Я. Сычева, Н.Г. Кисель, В.В. Бурховецкий, В.П. Комаров, ФТВД **19**, № 3, 24 (2009).
- 15. В.П. Пащенко, А.А. Шемяков, А.В. Пащенко, В.К. Прокопенко, Ю.Ф. Ревенко, В.А. Турченко, В.Н. Варюхин, В.П. Дьяконов, Г. Шимчак, ФНТ **33**, 870 (2007).
- 16. R.D. Shannon, Acta Cryst. A32, 751 (1976).
- В.П. Дьяконов, В.П. Пащенко, Э.Е. Зубов, В.И. Михайлов, Ю. Буханцев, И.М. Фита, В.А. Турченко, Н.А. Дорошенко, А. Шевчик, Р. Жуберек, Г. Шимчак, ФТТ 45, 870 (2003).
- 18. К.Б. Власов, А.И. Мицек, ФММ 14, 498 (1962).
- 19. К.П. Белов, УФН 169, 797 (1999).
- 20. J.M.D. Coey, M. Viret, S. von Molnar, Adv. Phys. 48, 167 (1999).
- 21. N.F. Mott, Adv. Phys. 50, 865 (2001).
- 22. V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, J. Appl. Phys. 104, 93909 (2008).
- 23. А.В. Пащенко, А.А. Шемяков, В.П. Пащенко, В.А. Турченко, В.К. Прокопенко, Ю.Ф. Ревенко, Ю.В. Медведев, Б.М. Эфрос, Г.Г. Левченко, ФТТ **51**, 1127 (2009).
- 24. N.H. Sinh, V.T. Mai, P.H. Quang, Adv. Natural Sci. 7, 37 (2006).

Г.Г. Сільчева, О.В. Пащенко, В.П. Пащенко, В.К. Прокопенко, Ю.Ф. Ревенко, О.О. Шемяков, В.О. Турченко, Ю.М. Гуфан

СТРУКТУРА, ФАЗОВІ ПЕРЕХОДИ, МАГНІТНІ ТА ТРАНСПОРТНІ ВЛАСТИВОСТІ МАНГАНІТ-ЛАНТАНОВИХ ПЕРОВСКИТІВ $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$

Рентгеноструктурними, резистивними, магнітними (χ , ЯМР ⁵⁵Mn) та магніторезистивними дослідженнями кераміки La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3±δ} (x = 0–0.20), спеченої

при $t_{ann} = 1350$ С, встановлено закономірності впливу *x* на структуру, фазові переходи та магніторезистивні властивості. Широкі асиметричні спектри ЯМР ⁵⁵Мп свідчать про високочастотний електронно-дірковий обмін між іонами Mn³⁺ \leftrightarrow Mn⁴⁺ та неоднорідність їхнього оточення іншими іонами і дефектами. Заміщення надстехіометричного марганцю призводить до часткової локалізації іонів Mn⁴⁺. Зменшення T_c , T_{ms} і зростання енергії активації з ростом *x* пов'язані з порушенням іонами Fe високочастотного електронного обміну між Mn³⁺ і Mn⁴⁺. Аномальний гістерезис χ розтлумачено однонаправленою обмінною анізотропією між магнітними моментами дефектної феромагнітної матриці та антіферомагнітного наноструктурного кластера. Магніторезистивний ефект поблизу фазових переходів обумовлений розсіюванням на внутрікристалітних неоднорідностях, а в низькотемпературній області – тунелюванням на міжкристалітних мезоструктурних неоднорідностях.

Ключові слова: манганіт-лантанові перовскіти, дефектність структури, фазові переходи, магніторезистивний ефект, аномальний гістерезис

A.G. Silcheva, A.V. Pashchenko, V.P. Pashchenko', V.K. Prokopenko, Yu.F. Revenko, A.A. Shemyakov, V.A. Turchenko, Yu.M. Gufan

STRUCTURE, PHASE TRANSITIONS, MAGNETIC AND TRANSPORT PROPERTIES OF MANGANITE-LANTHANUM PEROVSKITES $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$

From the X-ray diffraction, resistive, magnetic (χ , ⁵⁵Mn NMR) and magnetoresistive (MR) researches of the La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3±δ} (x = 0–0.20) ceramics sintered at $t_{ann} = 1350$ C the regularities have been revealed for x effect on the structure, phase transitions and magnetoresistive properties. The broad asymmetric ⁵⁵Mn NMR spectra point to the high-frequency electron-hole exchange between the Mn³⁺ and Mn⁴⁺ ions and to inhomogeneity of their surrounding by other ions and defects. The substitution of superstoichiometric manganese leads to a partial localization of ions Mn⁴⁺. T_c and T_{ms} decrease and activation energy increase with x growth are explained by the disturbance of the high-frequency exchange interaction between Mn³⁺ and Mn⁴⁺ by Fe ions. The anomalous hysteresis of χ is explained by unidirectional exchange anisotropy between magnetic moments of the defective ferromagnetic matrix and antiferromagnetic nanostructure cluster. The MR-effect in the vicinity of phase transitions is associated with the scattering from intracrystallite inhomogeneities, and the low-temperature MR-effect is governed by the tunneling at the intercrystallite mesostructural inhomogeneities.

Keywords: manganite-lanthanum perovskites, defective structures, phase transitions, magnetoresistance, anomalous hysteresis

Fig. 1. Concentration dependences of lattice parameter *a* and unit cell volume *V* for ceramics $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$)

Fig. 2. Temperature dependences of the absolute differential magnetic susceptibility for ceramics $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$): $-\Delta - -x = 0$, $-\Box - -0.05$, $-\bullet - -0.10$, $-\circ - -0.15$, $-\bullet - -0.20$

Fig. 3. Anomalous hysteresis of magnetic susceptibility at 77 K in weak fields for ceramics $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$): $a - x = 0, \delta - 0.05, e - 0.10, c - 0.15, \delta - 0.20$

Fig. 4. ⁵⁵Mn NMR spectra at 77 K for ceramics $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$): l - x = 0.02, 2 - 0.07, 3 - 0.10, 4 - 0.15

Fig. 5. Temperature dependence of resistivity for ceramics $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$): $-\Delta - x = 0$, $-\Box - 0.05$, $-\bullet - 0.10$, $-\circ - 0.15$, $-\bullet - 0.20$

Fig. 6. Concentration dependences of activation energy for $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$): $-\blacksquare -$ activation process, $-\circ -$ diffusion-type activation process

Fig. 7. Temperature dependence of magnetoresistance (H = 5 kOe) for ceramics $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$): $-\Delta - -x = 0$, $-\Box - 0.05$, $-\bullet - 0.10$, $-\circ - 0.15$, $-\bullet - 0.20$

Fig. 8. Phase diagram of $La_{0.6}Sr_{0.2}Mn_{1.2-x}Fe_xO_{3\pm\delta}$ ($t_{ann} = 1350^{\circ}C$) (PM, FM – paramagnetic and ferromagnetic states, respectively)