PACS: 75.70.Kw

А.В. Безус, Т.Ю. Борисенко, Ю.А. Сирюк, В.В. Смирнов

ПОВЕДЕНИЕ ДОМЕННОЙ СТРУКТУРЫ В ФЕРРИТ-ГРАНАТОВОЙ ПЛЕНКЕ С МАЛОЙ ОДНООСНОЙ АНИЗОТРОПИЕЙ

Донецкий национальный университет ул. Университетская, 24, г. Донецк, 83055, Украина

Статья поступила в редакцию 6 июля 2007 года

Экспериментально изучены особенности доменной структуры (ДС) и доменной границы (ДГ) в пленке с малой одноосной анизотропией, имеющей точку магнитной компенсации T_c . Обнаружены два вида спин-переориентационного фазового перехода (СПФП). При $T < T_c$ СПФП из одной угловой фазы в другую происходил путем поворота вектора намагниченности домена в энергетически более выгодное состояние, а при $T > T_c$ от осевой фазы к угловой.

Введение

Большое многообразие ДС, наблюдаемых в пленках ферритов-гранатов, определяется смешанным характером анизотропии. Магнитная анизотропия наряду с кубической кристаллографической содержит дополнительную одноосную компоненту, наведенную в процессе роста. Относительное влияние двух видов анизотропии зависит от температуры, в результате чего в пленке могут реализоваться ДС как типичные для одноосных или кубических магнетиков, так и обладающие совершенно отличными свойствами.

В работе поставлена задача экспериментально изучить особенности поведения ДС при изменении температуры T или магнитного поля H в пленке с малой одноосной анизотропией. Для исследования была выбрана пленка состава (YBi)₃(FeGa)₅O₁₂. Эта пленка отличается от изученных в [1] тем, что в ней очень слабая одноосная анизотропия, наблюдающаяся при высоких значениях T.

Параметры пленки: толщина $h = 18 \cdot 10^{-6}$ m, намагниченность насыщения при комнатной температуре $4\pi M_s = 10^{-2}$ T, поле анизотропии $H_a = 15 \cdot 10^{5}/4\pi$ A/m, коэрцитивность $H_{coer} = 10^{3}/4\pi$ A/m. Исследования проводили на магнитооптической установке, в которой были предусмотрены изменение температуры от 90 K до температуры Нееля T_N , а также действие магнитных полей, перпендикулярных плоскости пленки: монополярное импульсное H_{pul} и поле смещения H двух направлений. Если $\mathbf{H} \uparrow \downarrow \mathbf{M}$ (где \mathbf{M} – намагниченность внутри ЦМД), то H > 0, если $\mathbf{H} \downarrow \downarrow \mathbf{M}$, то H < 0. ДС наблюдалась благодаря эффекту Фарадея. Цветовая регистрация позволяла заметить изменение направления вектора намагниченности в доменах.

Описание экспериментальных результатов

Было проведено два вида исследований: при первом на ДС периодически воздействовали импульсным полем и полем смещения; при втором – влияние магнитных полей отсутствовало.

Доменная структура под действием магнитных полей

Изучали равновесную доменную структуру, которую формировали при каждой температуре импульсным полем. Ранее нами были измерены период *P* и поле коллапса *H_c* равновесной ДС (рис. 1) [2].

Рис. 1. Температурные зависимости поля коллапса и периода ДС при охлаждении $(\blacksquare - H_c(T), \bullet - P(T))$ и нагревании $(\square - H_c(T), \circ - P(T))$

При $T_5 > T > T_1$ наблюдались желтые и зеленые домены с отростками, направленными вдоль трех осей, являющихся проекциями осей типа (111) на плоскость пленки (рис. 2,*a*). В окрестности T_1 ДГ широкие, красноватого цвета, неодинаковой ширины и в некоторых местах неровные, как будто с ворсинками. Если на ДС действовало поле смещения небольшой величины, то после его снятия ширина красных ДГ изменялась, в некоторых местах оставалась только тонкая темная ДГ. На доменах местами наблюдались блеклые пятна. Появление белесого цвета могло быть связано с тем, что при указанной температуре под действием магнитного поля изменялся угол ориентации железных подрешеток по отношению друг к другу, т.е. появлялась неколлинеарность между подрешетками [3]. При понижении *T* период доменов увеличивался, а поле коллапса уменьшалось (см. рис. 1). В интервале T_2-T_3

между желтыми и зелеными доменами через один домен исчезала красная ДГ, а вместо нее появлялась узкая темная граница (рис. 2, δ). Затем при дальнейшем уменьшении температуры между зелеными и желтыми доменами снова появлялась широкая ДГ красного цвета. При приближении к T_c форма доменов изменялась, исчезали отростки (рис. 2, β). При T_4 исчезали желтые домены и появлялась монодоменность зеленого цвета, которая наблюдалась в интервале T_4-T_c . При T_c цвет монодоменности скачком изменялся с зеленого на желтый. Это можно объяснить тем, что достигнута температура магнитной компенсации T_c . Монодоменность желтого цвета наблюдалась до T_5 , а затем на желтом фоне появлялись зеленые домены с коричневой ДГ, более четкой, чем наблюдавшаяся при приближении к T_c со стороны высокой температуры. При понижении Tпериод зеленых доменов уменьшался, H_c росло (см. рис. 1). При T_6 коричневые ДГ изменялись по ширине, а вместо зеленых наблюдались желтые домены. Это означало, что между доменами произошел скачком обмен цветом, т.е. наблюдался СПФП. С понижением T уменьшался период желтых доменов.

С повышением температуры в интервале T_7-T_c наблюдалась монодоменность зеленого цвета, изменяющегося при T_c на желтый. При T_8 появлялись домены зеленого цвета с коричневой ДГ. По мере удаления от T_c ширина ДГ уменьшалась.

Итак, результаты можно обобщить следующим образом. В области, близкой к температуре магнитной компенсации, наблюдалась монодоменность, цвет которой при T_c изменялся. Монодоменность сохранялась при охлаждении в интервале T_4 – T_5 , при нагревании в интервале T_7 – T_8 , т.е. наблюдался гистерезис. Вблизи T_c в интервале T_1 – T_4 наблюдалась равновесная ДС и широкая ДГ красного цвета, неодинаковой ширины по всей длине домена. В интервале T_2 – T_3 широкая ДГ исчезала через каждый домен, а на ее месте наблюдалась тонкая контрастная ДГ темного цвета. При $T_1 < T \le T_{10}$ и в интервале T_6 – T_7 ДГ была более узкая, коричневого цвета.

Доменная структура при отсутствии магнитных полей

Если ДС сформировать при определенной температуре, а затем выключить поле, то в исследуемом температурном интервале она будет неравновесной. Ранее нами в [4] изучалось поведение неравновесной ДС в окрестности T_c . Было замечено, что в интервале T_3-T_1 желтый и зеленый домены приобрели розовый оттенок, а в интервале T_6-T_7 – лимонный. При охлаждении в районе T_{11} наблюдался интересный цветовой обмен. Зеленые домены приобрели желтый цвет окружающего поля, и на сплошном желтом поле видна была только коричневая ДГ. Потом те домены, что раньше были желтыми, приобрели зеленый цвет (рис. 2, e-e). Следовательно, произошел такой же СПФП, как и при T_6 в эксперименте с полем. Но тогда СПФП произошел быстро, а теперь он происходил медленнее, в интервале 174–177 K, и при нагревании повторился в обратном порядке.

Из результатов эксперимента видно, что вблизи Т_с поведение равновесной ДС отличается от поведения неравновесной. Если эксперимент проводили при воздействии полей на пленку, то вблизи Т_с имела место монодоменность. При охлаждении ниже T_c цвет монодоменности изменялся, как и должно быть при переходе через Т_с в однородном образце. Если же наблюдение ДС происходило без действия полей, то вблизи Т_с монодоменность не наблюдалась, т.к. образец был многодоменным. Приведенные результаты можно объяснить тем, что вдали от T_c при $T > T_9$ и $T < T_6$ существуют две коллинеарные магнитные фазы с направлениями результирующей намагниченности вдоль трех осей типа (111), расположенных под углом к плоскости пленки (желтые и зеленые домены). При приближении к T_c в интервалах T_4-T_8 и T_6-T_7 появляются две неколлинеарные фазы, так как магнитные подрешетки становятся неколлинеарными [5–7], что подтверждается изменением цвета ДС и видом ДГ. Результирующий магнитный момент направлен попрежнему вдоль одной из осей (111) под углом к плоскости пленки, но из-за неколлинеарности домены приобретают другие оттенки.

СПФП, наблюдаемый при T_{11} , происходил путем переориентации намагниченности всего домена. Изменение направления вектора намагниченности насыщения схематически показано на рис. 2,*г*–*е*. Приложение поля сместило температуру этого СПФП в область низких температур и привело к необратимости спиновой переориентации. В [8,9] проведен теоретический расчет энергии ДС ферритов-гранатов, обладающих смешанной анизотропией. Показано, что ДС перестраиваются так, чтобы достичь минимальной энергии. При этом происходит поворот вектора намагниченности в одном из доменов.

Формирование ЦМД и решетки ЦМД

Особый интерес вызывает в этой пленке формирование ЦМД и его поведение. ЦМД можно было создать только при $T \ge 370$ К. В отличие от пленок с большой одноосной анизотропией, где ЦМД можно было создать H_{pul} при отсутствии поля смещения [1], в этой пленке таким способом сформировать ЦМД не удалось. Были найдены два способа формирования ЦМД. При первом ЦМД создавали импульсным полем только в присутствии H > 0. близкого по величине полю коллапса, например, зеленого полосового домена (ПД). На обоих концах ПД, словно мыльные пузыри, создавались ЦМД, отрывались и сохранялись в присутствии Н при выключенном импульсном поле (рис. 2,ж). Но при уменьшении Н до нуля ЦМД теряли свою форму и вновь превращались в ПД. При втором способе импульсным полем при *H* < 0 (до 3·10⁴/4π A/m) из зеленых ПД формировались округлые домены. При выключении полей они превращались в ЦМД. При 370 К была создана гексагональная решетка ЦМД (рис. 2,3). Поскольку решетка ЦМД создается H_{pul}, перпендикулярным плоскости пленки, значит, при высокой Т пленка имеет слабую осевую анизотропию. При понижении Т ЦМД не создаются. Следовательно, с уменьшением Т анизотропия уменьшается (рис. 3).

Рис. 3. Схематическое изображение распределения магнитных фаз по температуре, К: T_c – точка компенсации, T_{SR} – температура спиновой переориентации, T_N – температура Нееля

В интервале температур 370–350 К наблюдалось изменение цвета ДС: темно-зеленые ЦМД становились светло-зелеными, а оранжевое поле – желтым. Таким образом, в этом интервале происходил СПФП от осевой к угловой фазе (рис. 3), как в [10]. При приближении к T_c некоторые ЦМД уменьшались и затем, как ртутные капли, сливались с большими ЦМД (см. рис. 2,*u*). Большие ЦМД двигались, при этом неравномерно изменялась ширина ДГ. С уменьшением *T* ЦМД теряли свою форму и превращались в ПД. Следовательно, в угловой фазе ЦМД не являлись устойчивыми, отвечающими минимуму энергии. Движение ЦМД происходило вдоль проекции оси легкого намагничивания на плоскость пленки. В этих направлениях ДГ была более широкая.

Выводы

Из приведенных результатов исследований можно сделать такие выводы. Вдали от T_c существуют две коллинеарные магнитные фазы с направлением результирующей намагниченности вдоль трех осей типа (111), расположенных под углом к плоскости пленки. Вблизи T_c наблюдаются две неколлинеарные фазы. Отмечено изменение ширины ДГ через один домен.

При $T < T_c$ обнаружен СПФП из одной угловой фазы в другую, который происходил путем поворота вектора намагниченности домена в энергетически более выгодное состояние. Под действием магнитных полей СПФП смещался в область более низкой температуры и оказывался необратимым. При $T > T_c$ обнаружен СПФП из осевой фазы в угловую. ЦМД формируется при высоких T, где существует осевая фаза.

- 1. Ю.А. Мамалуй, Ю.А. Сирюк, А.В. Безус, ФТТ 45, 1645 (2003).
- Ю.А. Сирюк, Ю.А. Кузин, А.В. Безус, А.А. Леонов, Сб. трудов 7-го Международного симпозиума «Фазовые превращения в твердых растворах и сплавах» (ОМА-2004), 6–10 сентября 2004 г., г. Сочи, Россия, с. 38.
- 3. P. Molho, M.P. Albuquerque, JMMM 226-230, 1388 (2001).

Физика и техника высоких давлений 2008, том 18, № 2

- А.А. Леонов, Ю.А. Мамалуй, Ю.А. Сирюк, Сб. трудов 20-й Международной школы-семинара «Новые магнитные материалы микроэлектроники» (НМММ-XX), 12–16 июня 2006 г., г. Москва, Россия, с. 455.
- 5. *Ф.В. Лисовский, В.И. Шаповалов*, Письма в ЖЭТФ **20**, № 2, 128 (1974).
- 6. *Н.Ф. Харченко, В.В. Еременко, С.А. Гнатченко*, ЖЭТФ **69**, 1697 (1975).
- 7. К.П. Белов, А.К. Звездин, А.М. Кадомцева, Р.З. Левитин, Ориентационные переходы в редкоземельных магнетиках, Наука, Москва (1979).
- Я.И. Грановский, А.А. Леонов, Ю.А. Мамалуй, Ю.А. Сирюк, Сб. трудов 8-го Международного симпозиума «Фазовые превращения в твердых растворах и сплавах» (ОМА-2005), 12–16 сентября 2005 г., г. Сочи, Россия, ч. І, с. 223.
- 9. *Я.И. Грановский, А.А. Леонов, Ю.А. Мамалуй, Ю.А. Сирюк*, Изв. РАН. Сер. физ. **70**, 956 (2006).
- 10. А.В. Безус, А.А. Леонов, Ю.А. Мамалуй, Ю.А. Сирюк, ФТТ 46, 277 (2004).

A.V. Bezus, T.Yu. Borisenko, Ju.A. Siryuk, V.V. Smirnov

THE BEHAVIOUR OF DOMAIN STRUCTURE IN THE FERRITE-GARNET FILM OF LOW UNIAXIAL ANISOTROPY

Domain structure (DS) and domain boundary (DB) peculiarities in the film of low uniaxial anisotropy with a magnetic compensation point T_c have been experimentally investigated. Moreover, the two types of the spin-reorientation phase transitions (SRPT) were detected. In the event of $T < T_c$ the SRPT occurs from one angular phase to another by domain magnetization vector rotation to energetically advantageous state and for $T > T_c$ – from an axial to angular phase.

Fig. 1. Temperature dependences of collapse field and period of DS under cooling ($\blacksquare - H_c(T)$, $\bullet - P(T)$) and heating ($\Box - H_c(T)$, $\circ - P(T)$)

Fig. 2. Domain structure types

Fig. 3. Areas occupied by magnetic phases at different temperatures, K: T_c – compensation point, T_{SR} – spin-reorientation temperature, T_N – the Neel temperature