PACS: 81.05.Mh, 81.20.Ev, 81.40.Vw, 61.10.Nz

Н.П. Беженар¹, С.М. Коновал¹, С.А. Божко¹, Н.Н. Белявина², В.Я. Маркив²

РЕЛАКСАЦИОННОЕ ВЗАИМОДЕЙСТВИЕ В СИСТЕМЕ *с*ВN–АІ ПРИ ВЫСОКОМ ДАВЛЕНИИ

¹Институт сверхтвердых материалов им. В.Н. Бакуля НАН Украины ул. Автозаводская, 2, г. Киев, 04074, Украина E-mail: bezhenar@ukr.net

²Киевский национальный университет им. Тараса Шевченко пр. Глушкова, 6, г. Киев, 03127, Украина

Методом рентгеноструктурного анализа исследовано влияние высоких давления (2.5–7.7 GPa) и температуры (1300–2300 K) на фазовый состав композитов, синтезированных реакционным спеканием в системе кубический нитрид бора (cBN)–Al. Установлено увеличение объема кристаллической решетки AlN, полученного при 2.5–4.2 GPa, 1300–1750 K, которое объясняется образованием на ее базе твердого раствора с внедрением атомов бора в междоузлия.

Введение

Метод реакционного спекания порошков *c*BN с Al при высоком давлении используют в ряде технологических процессов получения композиционных материалов инструментального назначения. Примерами являются разработанные в ИСМ НАН Украины композиты киборит-1 и киборит-2, имеющие структуру с непрерывным каркасом *c*BN, составляющим \ge 82 vol.% в композитах, и связкой, образованной продуктами реакций в системе *c*BN–Al. Основой связки является нитрид алюминия (AlN). Другие возможные соединения – это бориды алюминия (AlB₂, AlB₁₀, AlB₁₂) и тройные фазы системы Al–C–B. Наиболее часто идентифицируют AlB₂ и AlB₁₂ соответственно реакциям:

$$Al + \frac{2}{3}cBN = \frac{2}{3}AlN + \frac{1}{3}AlB_2,$$
 (1)

$$Al + \frac{12}{13}cBN = \frac{12}{13}AlN + \frac{1}{13}AlB_{12}.$$
 (2)

Влияние различных технологических факторов на количественный фазовый состав композитов системы *c*BN–Al, в том числе на состав боридных фаз, детально изучен в [1]. Было показано, что повышение давления приводит к смещению на диаграмме Al–B границы между AlB₂ и AlB₁₂ в сторону высоких температур, а линии ликвидуса – в сторону меньших концентраций бора в расплаве. Давление 7.7 GPa стабилизирует фазу AlB₂ при температуре 1750 К. Изменяя *p*, *T*-параметры спекания, можно в заданных пределах управлять составом композитов. Эксперименты [1] также показали, что образование AlN идет синхронно с уменьшением количества Al, а кристаллизации боридов алюминия предшествует растворение бора в расплаве. Отсюда можно сделать вывод о независимости этих механизмов.

Расчет баланса масс для реакций (1) и (2) свидетельствует, что при составе шихты cBN + 10% Al состав композита может изменяться в пределах, vol.%: 82–79 cBN, 11–15 AlN, 5–7 AlB₂. В эти же пределы попадают реакции с образованием боридов алюминия других составов. Дальнейшие исследования показали, что в определенных условиях, например при параметрах спекания p = 4.2 GPa, T = 1750 K, в образцах композита чаще всего идентифицируют только две фазы – cBN и AlN. В то же время отмечается значительный разброс данных по периодам решетки AlN, полученного в разных условиях. Такой разброс предположительно связан с образованием твердого раствора бора на базе кристаллической решетки AlN.

Возможность формирования твердого раствора бора в нитриде алюминия при высоком давлении рассматривали для систем *c*BN–AlN [2] и *c*BN–Al–C [3], но без уточнения кристаллической структуры AlN.

Целью работы является систематизация данных о периодах решетки AlN, синтезированного при реакционном взаимодействии в системе *c*BN–Al в условиях высоких давлений, и уточнение параметров его кристаллической структуры.

Методики исследования

Синтез AlN осуществляли реакционным спеканием под давлением шихты *c*BN–Al в аппарате высокого давления (ABД) типа «тороид». Термодинамические параметры спекания варьировали в области стабильности *c*BN: 1300 К – 2.5, 4.2 и 7.7 GPa; 1750 К – 4.2 и 7.7 GPa; 2100, 2300 и 2700 К – 7.7 GPa.

При параметрах спекания 4.2 GPa, 1750 К варьировали содержание Al в шихте от 10 до 30 mass% и продолжительность процесса от 3 до 7 min.

Поверхность образцов после спекания подвергали алмазной обработке.

Дифрактограммы от плоских поверхностей шлифованных образцов записывали на автоматизированном дифрактометре ДРОН-3 (медное фильтрованное излучение) в дискретном режиме: шаг сканирования 0.05°, время экспозиции в каждой точке 4 s, интервал углов $2\theta = 24-140^\circ$. Первичную обработку дифракционных данных (положения центров тяжести K_{α_1} -пиков и значения их интегральных интенсивностей) осуществляли методом полнопрофильного анализа. Качественный и количественный фазовый анализ (с уточнением по методу наименьших квадратов периодов кристаллических решеток каждой из идентифицированных фазовых составляющих), а также уточнение параметров кристаллических структур фаз (коэффициентов заполнения атомами компонентов соответствующих правильных систем точек, координатных параметров, изотропных температурных поправок B) проводили по комплексу программ [4]. Корректность выполненных расчетов контролировали графически и по значению фактора расходимости R.

Результаты обрабатывали по периодам решетки AlN с использованием методов математической статистики. Для обеспечения точности результатов при уточнении параметров кристаллической структуры расчеты проводили для образцов, где содержание AlN по интенсивности отражений составляло от 12 до 31%.

Для выбора стандартных значений периодов решетки AlN ($P6_3mc$) была использована дифрактограмма от поликристалла, прошедшего длительный высокотемпературный отжиг в атмосфере азота [5]. Полученные данные по периодам решетки ($a = b = 0.31131 \pm 0.00001$ nm, $c = 0.49777 \pm 0.00001$ nm) были близки к приведенным в международных стандартах [6].

Результаты экспериментов и их обсуждение

Влияние р, Т-параметров синтеза AlN на периоды его кристаллической решетки изучали с использованием микропорошков cBN с размером зерен от 1 до 3 µm при содержании в шихте 2 и 10% Al. Исследования проводили на 37 образцах. Анализ результатов представлен в табл. 1 и 2.

В исследуемом диапазоне давлений (2.5–7.7 GPa) термодинамически стабильна вюрцитная кристаллическая модификация AlN ($P6_3mc$, тип ZnS) [7,8]. Приведенные результаты показывают, что объем кристаллической решетки AlN, синтезируемого в системе *c*BN–Al, значимо зависит от давления синтеза. При 2.5 и 4.2 GPa он возрастает по сравнению со стандартным значением [5], а при 7.7 GPa заметно снижается с ростом температур в интервале 2100–2700 K.

Таблица 1

Источник	p, GPa	a = b, nm	c, nm	c/a	V, nm^3	$\Delta V/V_0, \%$
Данная						
работа:						
<i>n</i> = 11	2.5-4.2	0.3116(1)	0.4976(3)	1.597(1)	0.04184(4)	0.14
<i>n</i> = 26	7.7	0.31096(8)	0.4973(2)	1.594(1)	0.04165(4)	-0.3
[5]	10^{-4}	0.31131	0.49777	1.599	0.04178	0
[6]	_	0.31114	0.49792	1.600	0.04174	-0.1

Периоды и объем кристаллической решетки AlN, синтезированного при разных давлениях

Здесь *n* – количество образцов в выборке; в скобках – дисперсия значений при доверительной вероятности 0.68.

Таблица 2

Источник	Т, К	a = b, nm	c, nm	c/a	V, nm ³	$\Delta V/V_0$, %
Данная						
работа:						
<i>n</i> = 10	1300-1750	0.3112(1)	0.4980(3)	1.596	0.04177(5)	0
n = 6	2100	0.3110(1)	0.4971(3)	1.598(1)	0.04164(3)	-0.3
<i>n</i> = 4	2300	0.31085(7)	0.49664(7)	1.598(1)	0.04156(2)	-0.5
<i>n</i> = 6	2700	0.3109(2)	0.4965(3)	1.597(1)	0.04156(5)	-0.5
[9]*	2300	0.31145	0.49672	1.595	0.04173	-0.1

Периоды и объем кристаллической решетки AlN в зависимости от температуры синтеза под давлением 7.7 GPa

*Спекание шихты *c*BN + 10% AlN. Обозначения те же, что и в табл. 1.

Изменение периодов кристаллической решетки AlN, синтезированного при давлениях 2.5–7.7 GPa, в общем случае может быть связано с остаточными термоупругими деформациями в двухфазном композите. Расчетные оценки показали, что в двухфазном композите состава *c*BN–10% AlN после температуры спекания 2300 К остаточное термоупругое сжатие в фазе AlN составит ($\Delta V/V_0$)_{calc} = -0.08%, что практически совпало с результатом исследования [9] образцов, где AlN был в составе исходной шихты: ($\Delta V/V_0$)_{exp} = -0.1% (табл. 2). Сравнение результатов настоящей работы и [9] позволяет предполагать, что при кристаллизации AlN из расплава алюминия, осуществляемой при высоких *p*, *T*-параметрах (7.7 GPa, 2300 K), термодинамически стабильный зародыш AlN обладает кристаллической решеткой с параметрами вюрцитной структуры соответственно ее сжимаемости *in situ* [8]. Это объясняет уменьшение объема решетки AlN, синтезированного при высоких *p*, *T*-параметрах, на 0.3–0.5% по сравнению со стандартным значением.

В образцах, полученных при более низких параметрах (2.5–4.2 GPa, 1300– 1750 K), отмечено увеличение объема кристаллической решетки в среднем на 0.14%. При этих параметрах обработки диборид алюминия чаще всего не образуется, а бор предположительно входит в состав твердого раствора на базе кристаллической решетки AlN.

Уточнение позиций атомов в кристаллической структуре AlN, синтезируемого в системе cBN–Al при параметрах p = 4.2 GPa, T = 1750 K проводили на основании анализа интенсивности 23 независимых дифракционных отражений. Образцы в количестве 9 шт. были получены из шихты с разным содержанием Al (10, 20 и 30%), продолжительность спекания каждого состава – 3, 5 и 7 min. Средний размер зерен исходного cBN составлял 2.2 µm.

Моделирование возможных вариантов размещения бора по правильным системам точек пространственной группы *P6₃mc* и сопоставление полученных расчетных значений интенсивностей отражений с экспериментальными показало, что из всех образцов этой серии наилучшее соответствие было достигнуто для модели, предполагающей частичное внедрение атомов бора

в междоузлия 12(*h*) структуры AlN типа ZnS-вюрцит при наличии вакансий в позициях 2(*a*) (табл. 3).

Расчет, аналогичный приведенному в табл. 3, сделан для каждого из 9 образцов. Для анализа влияния в отдельности времени спекания и содержания Al в шихте использовали средние значения по трем образцам с дисперсией при доверительной вероятности 0.68. Значимого влияния продолжительности спекания от 3 до 7 min на периоды решетки и содержание бора не обнаружено.

В группах образцов, полученных из шихты с разным содержанием алюминия, периоды решетки AIN отличались (табл. 4) и ее объем находился в корреляции с количеством бора в междоузлиях (рисунок).

Таблица 3

Атом	Позиция	Коэффициент заполнения позиции	x	У	Z
Al	2(a)	a) 0.88(1)		0 667	0
Ν	2(<i>b</i>)	1.00(1)	0.333	0.007	0.386(1)
В	12(<i>h</i>)	0.11(2)		0	0.585(7)
Пространственная группа			<i>P</i> 6 ₃ <i>mc</i> (186)		
Периоды решетки, nm			a = 0.31155(3)		
			c = 0.49812(8)		
Независимые отражения			23		
Изотропная температурная поправка B , 10^2 nm^2			2.80(9)		
Фактор расходимости <i>R</i>			0.033		

Кристаллографические данные для соединения AIN структурного типа Zn	S-
вюрцит в образце из шихты cBN–10% Al (спекание при 4.2 GPa, 1750 K, 5 m	in)

Примечание. Состав соединения, at.%: 35 Al, 39 N, 26 B.

Таблица 4

Содержание AI в шихте и характеристики кристаллической решетки AIN

A1 0/	Периоды решетки, пт		B, at.%	Идентификация AlB ₂ в образцах,	
AI, γ_0 $a = b$	С	% интенсивности отражений			
10	0.31142(8)	0.4980(2)	24 ± 3	Нет	
20	0.31094(5)	0.4976(3)	13 ± 3	4–5	
30	0.31103(9)	0.4972(3)	16 ± 6	8	

Рис. Содержание бора в междоузлиях и изменение объема кристаллической решетки AlN, синтезированного из шихты *c*BN–Al при p == 4.2 GPa, T = 1750 K Представленные на рисунке зависимости свидетельствуют о различии кинетики реакционного взаимодействия в двух группах образцов. При 10% Al в шихте $\Delta V/V_0 > 0$. В этих образцах бориды алюминия не были идентифицированы.

В остальных образцах (20–30% Al в шихте), полученных при тех же параметрах спекания, фаза AlB₂ была идентифицирована, а изменение объема кристаллической решетки AlN ($\Delta V/V_0 < 0$) коррелировало с уменьшением количества бора в междоузлиях.

Причинами сдвига реакционного взаимодействия в сторону образования AlB_2 при сохранении *p*, *T*-параметров в ABД и увеличении содержания алюминия в шихте могут быть пока не изученные факторы кинетики массопереноса бора расплавом алюминия, а также изменение условий гидростатичности в реакционном объеме ABД.

Выводы

1. Объем кристаллической решетки AlN ($P6_3mc$, тип ZnS), полученного реакционным спеканием в системе *c*BN–Al, значимо зависел от *p*, *T*-параметров процесса. После *p* = 7.7 GPa и *T* = 2100–2300 К объем решетки был меньше стандартного значения на 0.3–0.5%, что могло быть следствием образования термодинамически стабильных зародышей AlN с параметрами вюрцитной структуры соответственно ее сжимаемости *in situ*.

2. Увеличение объема кристаллической решетки AIN, полученного при 2.5–4.2 GPa, 1300–1750 K, связано с образованием на ее базе твердого раствора с внедрением атомов бора в междоузлия.

3. Увеличение концентрации алюминия в шихте от 10 до 20–30% при p, *T*-параметрах спекания 4.2 GPa, 1750 К сдвигает реакционное взаимодействие в системе *c*BN–Al в сторону образования AlB₂.

- 1. *Н.П. Беженар, С.А. Божко, Н.Н. Белявина, В.Я. Маркив, П.А. Нагорный*, Сверхтвердые материалы № 1, 37 (2002).
- 2. Т.С. Бартницкая, А.К. Бутыленко, И.И. Тимофеева и др., Высокие давления и свойства материалов, Наукова думка, Киев (1980).
- 3. М.П. Беженар, С.А. Божко, Н.М. Білявина, П.А. Нагорний, С.М. Коновал, Сверхтвердые материалы № 6, 27 (2007).
- 4. В.Я. Марків, Н.М. Білявина, Тез. доп. II Міжнар. конф. «Конструкційні та функціональні матеріали» (КФМ-97), Львів (1997), с. 260.
- 5. *Н.П. Беженар, С.А. Божко, Н.Н. Белявина, В.Я. Маркив*, Сверхтвердые материалы № 2, 17 (1996).
- 6. JCPDS-ICDD (1993).
- 7. H. Vollstädt, E. Ito, M. Akaishi, S. Akimoto, O. Fukunaga, Proc. Japan Acad. B66, 7 (1990).
- 8. M. Ueno, A. Onodera, O. Shimomura, K. Takemura, Phys. Rev. B45, 10123 (1992).
- 9. N.P. Bezhenar, S.A. Bozhko, N.N. Belyavina, V.Ya. Markiv, Diamond and Related Materials 6, 927 (1997).

М.П. Беженар, С.М. Коновал, С.О. Божко, Н.М. Білявіна, В.Я. Марків

РЕЛАКСАЦІЙНА ВЗАЄМОДІЯ В СИСТЕМІ *с*ВN–АІ ПРИ ВИСОКОМУ ТИСКУ

Методом рентгеноструктурного аналізу досліджено вплив високих тиску (2.5–7.7 GPa) і температури (1300–2300 K) на фазовий склад композитів, синтезованих реакційним спіканням в системі кубічний нітрид бору (*c*BN)–Al. Встановлено збільшення об'єму кристалічної решітки AlN, отриманого при 2.5–4.2 GPa, 1300–1750 K, яке пояснюється утворенням на її базі твердого розчину з впровадженням атомів бору в міжвузловини.

N.P. Bezhenar, S.M. Konoval, S.A. Bozhko, N.N. Beljavina, V.Ya. Markiv

REACTION INTERACTION IN CBN-AI SYSTEM AT HIGH PRESSURE

By X-ray crystal analysis method it has been investigated high pressure (2.5-7.7 GPa) and temperature (1300-2300 K) effects on phase compound of the composites synthesized by reaction sintering in the cubic boron nitride system (*c*BN)–Al. It is shown that the volume of crystal lattice for AlN synthesized at 2.5–4.2 GPa and 1300–1750 K has increased. It is explained by the formation on its base of solid solution with interstitial boron atoms.

Fig. Content of interstitial boron (*I*) and change of crystal lattice volume of +llAlN (*2*) synthesized from *c*BN–Al mixture at p = 4.2 GPa, T = 1750 K