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A modification of Maxwell’s equations is proposed to describe media with electric and magnetic
properties changing essentially under electromagnetic field. It is shown that for such media the
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1. Introduction

We consider a classical Maxwell system in the SI (see [12]):

D, +J =curlH, (1.1)
(My) B, +curlE =0, (1.2)
divD =p,divB =0, (1.3)

where E and H are electric and magnetic fields; D and B are electric and magnetic
inductions; p is the charge density. The current density J satisfies the Ohm’s law:

J=cE, (1.4)

where G is the electric conductivity.
We consider isotropic media in which permittivity € =¢&(x,#) and magnetic
K =u(x,t) conductivity are functions of space and time. In this situation, equa-

tions of state have the following simple form (see [12]):

D=cE, B=pH. (1.5)

Substituting (1.5) into equations (1.1) and (1.2) we obtain equations for E = E/E,

and H = H/H, o for an isotropic medium in the following dimensionless form:
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- E; +dll~<]—510ur11:l =0, (1.6)
(My) . -
H; +aH+ p,curlE =0, (1.7)
where Z:L, =", ézi, }ft:i, 6=—,and
) X0 € Lo O
g 1 H E,

dl :é %4_%6 , a :é%’ :to—oé’ b2 = to 0 % (18)

e df 80 o dt X()S()EO e xouoHO o

Here the subscript 0 denotes the corresponding values for vacuum. Further, we
suppose that

Sofo _y _tofo thEy

=1, —0 _—q,
€ xo€o Ly XokoH
whence we find that
H € ce
_02080’ toz—o, xO:_O, (19)
0 Gy Gy

where ¢ = is the velocity of light. In view of (1.9), omitting ’LI °, we ob-

1
vV Ho€o

tain the following system:

o E, +a,E —bcurlH = 0, (1.10)
! H, + a,H + bycurlE = 0, (1.11)
where
lzl(ﬁmj, PR TN A (1.12)
e\ ds p dr € 1)

Hyperbolic systems as (M) are well investigated (see, e.g., [21]). For example, if
o=0, and

D=¢(E,H)E, B=pEHH, (1.13)
then the system (Mj), (1.13) is that considered in [6]. In particular, the authors

have shown that this system is Poincaré-invariant if and only if ¢(E, H)u(E,H) = 2,

and they found its various invariants.
Note, the system ( M) can be reduced to the following equation relative toE :

E, +aE, + a,E+b (b,V divE—b,AE+ Vb, xcurlE+Va, xH)=0, (1.14)

where

_1(de lde 1dn - d l(@ )) l(@ )l@ 1du
3 8(dt+6)+8dt+udt’ 4 dt(e dt %)) e\ TN edr T )
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Now, we consider the special case when € =¢g(z), u = u(¢) such that e(?)u(z) = v2
is a constant. In this case, due to (1.13), the equation (1.14) has the form:

E, +(asE), —~v>AE =0, (1.15)

1(de . ) :
where a5 = —(d— + Gj. For example, if a5 is a constant, ie. ¢&(t)=
g\ ar

t
=eaSI(s(O)—IG(I)e_QSTdt], then (1.15) has the following solution E,, =
0

| ) 2
7 ) N —Clsi (15_4V k
:{EWJ}z{elkfxmft} , Where k]-eRN,and ®; = | J| .Asa
j=1 |

2
consequence, this solution has spatiotemporal oscillations if as —4v~? |k |2< 0,
and spatial oscillations only if as —4v~? | k; ]22 0.
In a more general situation, electric and magnetic inductions depend on electric
and magnetic fields (see [12]), i.e.
D =D(E,H), B=B(E,H). (1.16)

Below, we consider the simplest case of the equations of state (1.16) when per-
mittivity and magnetic conductivity are some functions of space and time de-
pending on electric £ and magnetic H fields and its gradients, precisely, of the
energy density w and Vw. In the case, we arrive at the system (), i.e. equa-

tions for E and H in an isotropic nonlinear medium, where a; = a;(x,¢,w,Vw) and
b; =b;(x,t,w,Vw) (i=1, 2) satisfy relations (1.12). We will study media in

which nonlinear functions a; and b, satisty the following conditions:

a;(x,t,w,Vw) > dw" 7 |Vw|P, 0<d <o, i=1, 2, (1.17)
b (x,t,w,Vw) =b, (x,t,w,Vw), (1.18)
|b;(x, 1, w, VW) [< dyw™ !, 0<dy <00, i=1, 2, (1.19)

|V b, (x,t,w, VW) |<dsw" 2 | Vw], 0<dy <o, i=1, 2, (1.20)

where w=w(x,t)=F 2+ H? is the dimensionless energy density corresponding to

isotropic media with constant permittivity and magnetic conductivity;

meR', p>0andn>0 (1.21)

are parameters of medium. The special choice of structure conditions on @; and b;

allows us to apply methods from the theory of parabolic equations to the hyper-
bolic system (M ). Conditions (1.17)—(1.20) result in the following restrictions on

gand u:
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d—t‘z dw™ | Vw?,

e=pu>dyw, l(ﬁ—i-cs)zdlwm_l|Vw|p, ﬁd

e\dr

whence we deduce that

t
€= > max {a’zlwl”, 8|t:0 exp{dlj.wm_l | Vw [P drj}
0

The equations like (M;) describe media in which permittivity and magnetic con-

ductivity are some nonlinear functions. The media have same structure to have to
appear in the simulation of various processes in laser optics and weakly ionized
plasma theory, where properties of medium are strongly dependent on energy
density of electromagnetic field, for example, ferroelectric, piezoelectric, multifer-
roic, etc.

In this paper, we study the propagation properties of solutions to Cauchy
problem for Maxwell’s equations in the following dimensionless form

E,+a E—b curlH=0in Oy, (1.22)
(M) {H,+a,H+b,curlE=0in Oy, (1.23)
E(0, %) = Eo(x), H(0,x) = Hy(x), (1.24)

where QT:(O,T)XRN, N=2 3, 0<T<ow, and the functions a;=

=a,(x,t,E,HVENVH), b=b(x,t,E,H,VEYVH) (i=1, 2) satisfy conditions
(1.17)+1.20). The unknown functions are electric E and magneticH fields, which
depend on the time ¢ and the space-variable x . Moreover, we suppose that the initial

electromagnetic field is located in half-space R” := {x =(x,xy)eRY 1 xy < O} , L.e.

suppw(.,0) = RY, (1.25)

where w(x,t) = E*+H?.
Remark 1.1. If a; =a,, b =b,, and div(ExH)=0 then from (M) we find

t
that w(x, ) =w(x,0)exp —ZJ‘ a dr] , 1.e. the energy density w decays in time.
0

Thus, the presented system (M) is obtained from the classical Maxwell’s sys-
tem (M) taking into account the equations of state (1.16) for isotropic nonlinear
medium and the Ohm’s law for current density (1.4). Media are described to pos-
sess the finite speed propagations property. There are many papers in which en-
ergy decay was obtained for different problems concerning Maxwell’s equations.
Well-posedness and asymptotic stability results and decay of solutions are proved
making use of different techniques. Below, we mention some results concerning
energy decay and asymptotic of solutions.

Some linear evolution problems arise in the theory of hereditary electromag-
netism. Many authors studied the influence of dissipation due to the memory on

47



®du3nKa U TEXHHKA BbICOKHX aaBJjiennii 2009, tom 19, Ne 4

the asymptotic behavior of the solutions (see [2,4,5,7,13,14,20]). The polynomial
decay of the solutions when the memory kernel decays exponentially or polyno-
mially was shown in [15]. It is studied the asymptotic behavior of the solution of
the linear problem describing the evolution of the electromagnetic field inside a
rigid conducting material, whose constitutive equations contain memory terms
expressed by convolution integrals. These models were proposed in [19] where it
was shown that the exponential decay of the memory kernel is able to produce a
uniform rate decay of the energy in rigid conductors with electric memory.

The exact boundary controllability and stabilization of Maxwell’s equations
have been studied by many authors (see [17] and references therein). In [17] the
internal stabilization of Maxwell’s equations with the Ohm’s law for space vari-
able coefficients is studied. The authors give sufficient conditions on parameters
of the medium which guarantee the exponential decay of the energy of the system.
The result is based on observability estimate, obtained in some particular cases by
the multiplier method, a duality argument and a weakening of norm argument, and
argument used in internal stabilization of scalar wave equations.

The energy decay of solutions of the scalar wave equation with nonlinear
damping in bounded domains has been shown in [3,11,16,23-26]. In the case
when there is no damping term in the equation for the dielectric polarization, the
long-time asymptotic behavior of the solution of Maxwell’s equations involving
generally nonlinear polarization and conductivity is studied in [8].

The propagation of electromagnetic waves in gas of quantum mechanical sys-
tem with two energy levels is considered in [10]. The decay of the polarization
field in a Maxwell-Bloch system for 1 — oo was shown.

The transient Landau—Lifschitz equations describing ferromagnetic media
without exchange interaction coupled with Maxwell’s equations is considered in
[9]. The asymptotic behavior of the solution of this mathematical model for mi-
cromagnetism is studied. It is shown the strong convergence of the electromag-
netic field with respect to the energy norm for # — oo on bounded sets of nonvan-
ishing electrical conductivity.

Following the dominant trend in the literature, we can conclude that study of
the system (M) is not only of theoretical interest but is useful for applied re-
searches. Since these authors are not specialists in electromagnetism, we apolo-
gize in advance for the omissions and inaccuracies. We hope that there is an inter-
disciplinary audience which may find this useful, whether we do not know any
concrete media with the proposed properties.

The present paper is organized as follows. In Section 2 we formulate our main
result. In Sections 3 we prove the finite speed propagations property to some time
which depends on the parameters of the problem and the initial electromagnetic
field. The method of proof is connected with nonhomogeneous variants of Stam-
pacchia lemma, in fact, it is an adaptation of local energy or Saint—Venant princi-
ple like estimates method. Appendix A contains necessary interpolation inequali-
ties and important properties of nonhomogeneous functional inequalities.
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2. Main results
We introduce the following concept of generalized solution of the system (A ):

Definition 2.1. Let n>1, p>1,—p<m< p(n—1) and w=E*+H?>. A pair
(E(x,1), H(x,7)) such that

m+p

we CO,T;L'(RMY), w 7 e 1P (0,T; WP (RV)), w, € L'(Or)

is called a solution of problem (M) if for a.e. ¢ > 0 the integral identities

1 1
ERIN E2 (6, xn(t, x)dx — > £ { E(t,x)n, (1, x)dxdz + g { a B2 (1, x)n(t, x)dxdz —
~ [ byE curl H dxds =% [ E*0,xm(0,x)dx, 2.1)
Or RN

% [ H@t,om(, x)dx—% [[ 72 . 0m, (&, x)dxd + [ ay H (2, xn(e, x)ded +
RN Or Or
+ j [ b,H curl Edxds =% [ H#7(0,x)n(0, x)dx (2.2)
Or RY

are satisfied for every ne CI(QT) .

The main result is the following.
Theorem 1. Let the pair (E(x,7), H(x,?)) be a solution of the problem (), in

g

max{—p, —p(l+%—%), —p(l+%—z:ll)}<m<p(n—2)+l.

Then there exists a time 7" >0, depending on the known parameters only (in par-
ticular,[Jw(x,0) DL )), and a function I'(¢) € C[0,7],T°(0) =0 such that

the sense of Definition 2.1. Let p>1,n>1 (and n<1+

and

(RN

p+N(m+p-n) t* fort <1,
[(¢) = K max {¢ PPNPD 88— K0 N s pn) (2.3)
¢ PPN for g >,
where
_ p(p—l+N(m+p—n))[np+N(m+p—1)]
(p+N(m+p-D)[p(p(n=1)—=m)+ N(p-D)(m+p-1)]’
and

supp wit,.) C {x =(x,xy) e RN 1xy < F(z)} VO<t<T" (2.4)
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re. E(x,t) = H(x,t) = 0 for all xe{xz(x’, xN)eRN:xN <F(t)}. Here K =

= K(n, m, p, N,llw(0,x) [IL )) is a positive constant.

1 (RY
Remark 2.1. The statement of Theorem 1 stays true if we consider the problem
for system (M) in some bounded domain. Then, instead of (1.25), we suppose

that a support of initial energy of electromagnetic field is contained in some ball
into the domain.

3. Proof of finite speed of propagations
Summing (2.1) and (2.2), in view of conditions (1.17) and (1.18), we find that

2]

w(t, x)n(t, x)dx — % j j w(t, )M, (1, x)dxd + d, j j W™ [V w|P (2, x)dxds +
RN Or

Or
+ H bydiv(Ex H)n(x,t)dxds < % J- w(0,x)n(0,x)dx . 3.1)
Or RN
Above we used the following relation:

div(ExH)=HcurlE-EcurlH. (3.2)
From (3.1), (1.19) and (1.20) we get

m
[ we, TG, Tydx = [ wie, om, (x, Oydxde +¢ [[|[Vw 7 P (e, t)dede <
RN Or Or

< [ wix, 00(x,0)dx +2d, [[ w"™ [ExH || Vn(x, 1) | dede +
RN Or

+2d; [[ W' |V w | ExH[n(x, 0)drde < | w(x,0m(x, 0)dx +

Or RN
m+p p(n-1)-m
+ef[IVw 7 1P (e 0dxde+e(e) [[w 7 n(xf)dede +
Or Or
+cﬂ W' | Vn(x, £) | dxdt (3.3)
Or

for every nonnegative function mn(x,t)eC ! (Or), where €>0,p>1,n>1,

M>l)

-p<m< p(n-2)+1 (ie. 1

For an arbitrary s € R and &> 0 we consider the families of sets

Q(s) = {x =(x,xy) € RN Xy 2 s}, 07 (s)=(0,T)xQ(s),
K(5,8)=Q(s)\Q(s+3), Ky(s,0)=(0,T)xK(s,0).
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Next we introduce our main cut-off functions nsys(x)ecl (RN ) such that

0<n,s(x)<1Vxe R" and possess the following properties:

0, x e RV \Q(s),

c
IVn,sI£= VxeK(s,0).
1, x € Q(s+95), s

Ns,s (x) = {

Choosing ¢ > 0 sufficiently small and
N0 ) =M,y 5(x) exp(—zr—‘j VT >0 (3.4)

in integral inequality (3.3), we find

mep

sup | w(x,t)dx+% [[ wndxde+e [[ Vw7 [P dxde<

1€(0, T) ) (5+8) Or (5+9) Or (5+9)
p(n-1)-m
< j W, 0)dx+ € ” wdxds +c j j w P dvdf=: Rp(s,8), (3.5)
Q(s) Kr(5.9) O (s)
where seR',§>0,7>0. Owing to (1.25), we have
[ wx,0)dx=0 vs=0. (3.6)
Q(s)
We introduce the functions related to w(x,?):
p(n-1)—-m
Ap(s) = ﬂ w'dxdt, Bp(s):= jj w P dxdr.

Or(s) Or(s)
Applying the interpolation inequality of Lemma A.2 in the domain Q(s+9J) to the

m+p np
function v=w ? for a=——, d=p, b= P , 1=0, j=1, and integrating
m+p +p

the result with respect to time from 0 to 7', we obtain

Ap(s+8)<cTMRIPI(S,8), (3.7)
_ N@-1) __ pn-D _ ( L) imi-
where & = DA NmEp=D) <L By = PENmTp-D’ m>n—p 1+N . Simi
larly, applying the interpolation inequality of Lemma A.2 in the domain Q(s+0)
m+p

. p(p(n=-1)-m) P
to the function v=w ? for a= ,d=p, b=——,i=0, j=1,

(p=Dm+p) > P " mep /

and integrating the result with respect to time, we find that

Br(s+8)<cT R RIP2(4,5), (3.8)
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where &, = M (P(1=2)=m1) p(p(n=2)—m+1)

B,

<1, =
(p—D(p+N(m+p-1) (p—D(p+N(m+p-1)

pn-=1) ( 1 ) .
> T pl1+ v/ Next we define the function

Cr(s) = (Ap () *P2 + (Br(s)'™P.
Then
Cr(s+8)<c F(T)[5 PCHPi(s)+ ChP2 (s)],
where

B=(1+B,)1+B,), F(T)=max {T(l—k1)(1+ﬁ2), T(l—kz)(1+[31)} .

Below, we find some estimate L' -norm of w(x,t) by L' -norm of w(x,0),

will be used in the next consideration.

, m>

(3.9)

which

Lemma 3.1. There exists some constantc > 0, depending on known parameters

of the problem, such that the following estimate
j w(x,t)dx < ¢ j w(x,0)dx Vi<T,,
RY RY
is valid. Here 7} depends on m, p,n, N and Uw(x,0) DLI (&Y
Proof. We set s =—=28,6=s">0 in (3.5) and pass to the limit as 5" — oo

sup jw(x,z)dﬁ%jj w(x,t)dxdt+c'”|an? 7 dxdt <
1(0.T) pN Or Or
p(n-1)-m
< Iw(x,O)dx+J.Iw Pt dxdt .
RN Or

(3.10)

(3.11)

Applying the interpolation inequality of Lemma A.2 in RY to the function

mp 1) -
v=w ? for a:p(p(n ) m),d=p,b= P , i=0,j=1, and Young’s
(m+p)(p-1) m+ p
inequality, we find that
ad a(1-0)
p(n—1)-m m+p P b
'[w rodx<c I|VW” 1 dx dex <
RV RV RN
ap(1-6)

mtp b(p—ab)
SSI IVw 7 P dx+c(e) jwdx Ves>0,
RV RN
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N(m+n)(p(n—-2)—m+1)
(N(m+p—1)+p)(p(n—1)—m)
spect to time from 0 to 7', we obtain

where 0=

. Integrating this inequality with re-

ap(1-0)
p(n—-1)—-m m+p T bfp—ae)
jjw = dxdtSa”|Vw” |de+c(g)j jwdx dt.  (3.12)
Or Or 0\ RN
Choosing ¢ > 0 sufficiently small, from (3.11), (3.12) we have
mip
sup J. w(x, )dx +%H w(x, t)dxds + c” |[Vw ? P dxdt <
te(0,7) RN Or Or
ap(1-6)
T b(p-ab)
< jw(x,O)dch[jwdx dr . (3.13)
RY 0\ RN

From the last inequality we deduce that for every ¢#:0<¢ <7 the following ine-
quality is valid

J.w(x,t)de Iw(x,O)dech.[ j
RN RY 0\ RY
(N-1)(p(n—=1)—m)+N(p-1)(m+ p)
p(p—1+N(m+p—n))
Appendix A we obtain (3.10) with

Y
w(x, t)de dr,

where v = . Applying Lemma A.3 from

I-y

ﬁ[ [ w(x,O)dx] ify<l,

RN
T, = o (3.14)
1 .
w(x,0)dx ify>1,
2<v-l>uv (x.0) J Y

and 7; —> 0 as Dw(x,O)DLl(RN)—>O.

Further, using the definition of the functions C;(s) and (3.10), we get
Cr(sg) <K F(T) VT<ZT, (3.15)

where the positive constant K, depends on n, m, p, N and Uw(x,0) DLl &Yy
Now we choose the parameter 6 >0 which was arbitrary up to now:
1

. 2c P ’
51 (9= oy PO (s)} ,
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where the function H7(s)=cF (T )C?2 (s) is such that Hr(sy)<1 at some point
sy =0, whence we obtain

P B2
. _ 2 =
T <T, =cmin KO (1=kp)(1+B2) ’KO (I=k)(1+B1)(1+B2 ) , (3.16)

and 7, — oo as Dw(x,O)DL —0.

1(RY)
We obtain the following main functional relation for the function 87 (s):

1+HT(S0)

%1
; j<1 (3.17)

Or(s+07(s))<edr(s) Vs=s520, 0<8=[

VO<T<T := min{Tl,Tz} , with 7] of (3.14) and 7, of (3.16). Now we apply
Lemma A.1 to the function 67 (s) of (3.17). As a result, we obtain

57(s)=0 VS2S0+ﬁ8T(SO). (3.18)

Then, in view of (3.15), we find

1 1 B (1-k2 )(1+1)
87 (s0) SC[C% (sO>F<T>} P< [FMP )P < c(F (D)) =cmax{T1-kl,T 1492 }

V0<T <T".Choosing in (3.18) s, =0 and

p+N(m+p—n)

p+N(m+p-n) TK for T < 1,
=C
T PNmer=) for T > 1

s =I(T) = cmax {T pNGrp ) T

p(p=1+N(m+ p—n))[np+N(m+ p-1)]
(p+N(m+p=D)[p(p(n=D~m)+N(p-1)(m+ p-1)]
w(T,x)=0 for all xe{x=(x",xy)e RN :xy 2T(¢)}. And Theorem 1 is proved

completely.

VO<T<T*, k= . Thus

Roman Taranets acknowledges financial support from the INTAS under the
project Ref. No: 05-1000008-7921.

Appendix A
Lemma A.1. [ 22] Let the nonnegative continuous nonincreasing function f{s):

[s¢,0) = R! satisty the following functional relation:

F(s+f(8)<ef(s) Vs=sp, 0<e<l.
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Then f(s)=0Vs>sy+(1—£)" f(sp).

Lemma A.2. [18] If Q< R”" is a bounded domain with piecewise-smooth
boundary, a >1, be(0,a),d >1, and 0<i< j, i, j € N, then there exist positive
constants d; and d, (d, =0 if the domain Q is unbounded) that depend only on
Q. d, j,b, and N and are such that, for any function v(x) € de (Q) NP (Q), the

following inequality is true:

o], <a|pi], e, + dalbl
Q) @ 2P @)
1,01
where 9 =2 ae[i,,lj.
1,7 1 LJ
b N d

Lemma A.3. [1] Suppose that v(t) is a nonnegative summable function on
[0,T] that, for almost all ¢ €[0,T], satisfies the integral inequality

t
v(t) <k+m j h(t)g (v(v))dr,
0

where k>0, m>0, h(t) is summable on [0,7], and g(t) is a positive function
for t>0. Then

v(t) <G [G(k) +m| h(r)er
0

v

for almost all # €[0,7]. Here G(v) = gcg) ,V>vy>0.
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FO.B. Hamneesa, P.M. Tapaneyw, B.M. IOpuenko

CKIHYEHA WBWMAKICTb NMOWNPEHHA 36YPEHDb
ENEKTPOMATHITHOIO NONA Y HENIHIMHUX I3BOTPOMHMX
ONCIMEPCHNX CEPEOOBULLAX

3anpornoHoBaHO MoAudIKaIilo piBHIHL MakcBesa, IO ONUCYE CEPEIOBHINA, B SKUX
€JIEKTPUYHI Ta MarHiTHI BJIACTUBOCTiI CYTTEBO 3MIHIOIOTHCS IIiJ] BILTUBOM 30BHIIIHHOTO
€JIeKTPOMAarHiTHOro moisd. JJisi TakuxX CEepemOBHIN BCTAHOBJIIEHO, IO E€ICKTPOMATrHITHI
XBHIJII PO3MOBCIO/IKYIOTBCS 31 CKIHUEHOIO IIBUAKICTIO Ha MPOTs3i 4Yacy, SIKUi, B CBOIO
4yepry, 3aJeKUThb BiJ IOYAaTKOBOi €HEprii eJIeKTPOMAarHiTHOTO MOl Ta HEeTIHIHHUX
mapaMeTpiB cepeIoBHIIA.

KarouoBi cioBa: piBHSHHSI MakcBena, HENiHIHHE TUCIIEPCHE CEpPEIOBHINEG, CKiHUCHA
IIBUJIKICTh IOIMIUPEHHS 30ypeHb, ACHMIITOTHYHA ITOBEiHKA

IO.B. Hamneesa, P.M. Tapaney, B.M. FOpuenxo

KOHEYHAA CKOPOCTb PACMPOCTPAHEHWA BO3MYLLEHI
SNEKTPOMAIHUTHOIO NONA B HENMMHEWMHBIX M3OTPOMHbLIX
ONCIMEPCUOHHbBIX CPEOAX

IIpemnoxena Mmonudukaiis ypaBHeHHH MakcBeia, OMUCHIBAIONIAs CPeabl, B KOTOPHIX
SJIEKTPUUYECKUE U MAarHUTHBIE CBOMCTBA CYIIECTBEHHO H3MEHSIIOTCSI MOJ BO3JIEHCTBHEM
BHEIIHETO JJIEKTPOMArHUTHOTO TOJA. J[JIs1 TakWx cpea yCTaHOBJIEHO, YTO 3JIEKTpoMar-
HUTHBIE BOJTHBI PACIPOCTPAHAIOTCS C KOHEYHOW CKOPOCTHIO B TEUEHHE BPEMEHH, 3aBUCAIIIETO
OT HaYaJILHOU SHEPIruu 3JICKTPOMArHUTHOI'O ITOJIA U HETMHEHMHBIX mapaMeTpoOB CPEALIL.

KioueBble cjioBa: ypaBHeHHss MakcBesUia, HeJMHEHHAs TUCIEpPCHas cpefa, KOHeuHast
CKOPOCTh pacrpoCTpaHeHHs BO3MYIICHU, aCHMITOTHYECKOE IOBEICHHE
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