PACS: 71.20.Be, 75.50.Ee, 75.50.Gg, 75.10.Lp, 75.30.Kz

В.И. Вальков¹, И.Ф. Грибанов¹, Е.А. Дворников¹, А.П. Сиваченко¹, Б.М. Тодрис¹, А.В. Головчан¹, В.И. Митюк²

НИЗКОТЕМПЕРАТУРНЫЕ ПЕРЕХОДЫ ПОРЯДОК-ПОРЯДОК В НЕКОТОРЫХ МАРГАНЕЦ-КОБАЛЬТОВЫХ СИЛИЦИДАХ С ОРТОРОМБИЧЕСКОЙ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ ТИПА Со₂Р

¹Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: valkov@dpms.fti.ac.donetsk.ua

²НПЦ НАН Беларуси по материаловедению ул. П. Бровки, 19, г. Минск, 220072, Беларусь

Статья поступила в редакцию 6 мая 2009 года

Исследовано влияние давления, температуры и сильного магнитного поля на устойчивость низкотемпературной (HT) геликоидальной фазы и особенности спонтанного и индуцированного магнитным полем превращения между геликоидальным и ферромагнитным (FM) состояниями в магнитокалорических сплавах $Mn_{2-x}Co_xSi$ ($0 \le x \le 0.2$) и $MnCo_{1-y}Fe_ySi$ ($0 \le y \le 0.2$). Рассчитаны из первых принципов электронные структуры и магнитные характеристики этих сплавов и проведено их сравнение с экспериментом. На базе полученных результатов предложен механизм температурно-индуцированных переходов порядок–порядок в рассмотренных силицидах, основанный на инверсии энергетического дисбаланса между спиральным и FM-состояниями вследствие спин-флуктуационной перенормировки исходной HT-структуры плотности электронных состояний.

Ключевые слова: индуцированные фазовые переходы, магнитные фазовые переходы под давлением, плотность электронных состояний

Введение

Магнитные фазовые переходы порядок–порядок, наблюдаемые при понижении температуры в сплавах $Mn_{2-x}Co_xSi$ ($0 \le x \le 0.2$) и $MnCo_{1-y}Fe_ySi$ ($0 \le y \le 0.2$), приводят к стабилизации НТ магнитоупорядоченной фазы, не обладающей спонтанной намагниченностью [1]. Естественно предположить, что магнитная структура НТ-фазы аналогична длиннопериодической двойной спиральной структуре (SS), реализующейся в процессе спонтанного перехода из FMсостояния в базовом соединении MnCoSi при его охлаждении [2]. Температура перехода FM–SS зависит от внешних условий (давления, легирования, метода

© В.И. Вальков, И.Ф. Грибанов, Е.А. Дворников, А.П. Сиваченко, Б.М. Тодрис, А.В. Головчан, В.И. Митюк, 2009

приготовления образцов) и может быть приближена к комнатной температуре [3]. Обратное превращение из спирального в FM-состояние можно индуцировать магнитным полем, причем индуцированные переходы сопровождаются большим магнитокалорическим эффектом (в частности, большим скачком магнитной энтропии), и их критические поля вблизи точки перехода SS–FM относительно невелики [3]. Перечисленные особенности магнитного превращения порядок–порядок в сплавах на основе MnCoSi делают эти сплавы привлекательными и перспективными с точки зрения магнитокалорических приложений, в частности создания магнитных рефрижераторов для работы в области комнатной температуры [3]. В настоящей работе исследовано влияние замещения атомов Со на атомы Mn и Fe в MnCoSi, а также внешнего давления, температуры и магнитного поля на устойчивость HT-фазы, что дает информацию, необходимую для выяснения механизма переходов порядок в этих сплавах и может быть полезно для оптимизации их магнитокалорических характеристик.

1. Методики приготовления и измерения образцов

Традиционно поликристаллические образцы сплавов на основе MnCoSi с различными легирующими добавками изготавливаются методом прямого плавления исходных компонент с последующим отжигом при различных температурах и закалкой или медленным охлаждением [3,4]. При этом отмечено, что в зависимости от длительности охлаждения, значений температуры отжига и закалки величины намагниченности насыщения и температуры перехода в антиферромагнитное состояние могут значительно изменяться. Мы подбирали соответствующие режимы таким образом, чтобы приблизить температуру перехода порядок–порядок (SS–FM) к комнатной температуре, что важно для практического использования магнитокалорического эффекта, сопровождающего такие переходы [3]. После двойной переплавки растертые в порошок образцы помещали в кварцевые ампулы, которые после откачки воздуха и запайки нагревали до температуры 950°C, выдерживали 60 h и медленно (со скоростью 12 deg/h) охлаждали до комнатной температуры.

Магнитные свойства изучали посредством измерения температурных зависимостей намагниченности M, магнитной восприимчивости χ и полевых зависимостей намагниченности M(H) при разных температурах. Температурные зависимости намагниченности измеряли в постоянных магнитных полях на оригинальных установках. Для HT-измерений в области 77 K $\leq T \leq$ \leq 350 K в магнитном поле H до 10 kOe использовали маятниковые весы типа Доменикали. Высокотемпературные измерения магнитной восприимчивости до 800 K в магнитном поле до 8.6 kOe проводили на компьютеризированных фарадеевских весах [5]. Полевые зависимости намагниченности измеряли в импульсном магнитном поле напряженностью до 300 kOe с помощью индукционного магнитометра, аналогичного описанному в [6]. Образец с микросоленоидом находился внутри контейнера высокого давления, заполненного газообразным гелием. Сжатие гелия до 2 kbar осуществляли газовым компрессором [6]. Для понижения температуры образца от 300 до 17 K сосуд высокого давления помещали в выносную ячейку гелиевого детандера. Рентгеновские измерения зафиксировали однородную орторомбическую кристаллическую структуру Co₂P только для Mn_{2-x}Co_xSi. В сплавах MnCo_{1-y}Fe_ySi наряду с орторомбической фазой обнаружено присутствие другой фазы.

2. Результаты измерений

Представление о границах устойчивости FM-фазы по температуре при атмосферном давлении в системах $Mn_{2-x}Co_xSi$ и $MnCo_{1-y}Fe_ySi$ дает рис. 1. Здесь же приведены температурные зависимости обратной парамагнитной восприимчивости для $Mn_{1.2}Co_{0.8}Si$ и $MnCo_{0.8}Fe_{0.2}Si$, из которых определены значения парамагнитных магнитных моментов μ_{pm} для этих силицидов. В обоих случаях эти величины существенно превосходят значения магнитных моментов, соответствующих намагниченности максимумов на зависимостях M(T), обусловленных возникновением FM-фазы.

Рис. 1. Температурные зависимости намагниченности *M* при H = 9.7 kOe и обратной восприимчивости χ^{-1} при H = 8.6 kOe сплавов систем Mn_{2-x}Co_xSi (*a*) и MnCo_{1-y}Fe_ySi (*б*): $\circ - x = 0.8$, $\triangle - 0.9$, $\nabla - 1.0$; $\circ - y = 0$, $\triangle - 0.05$, $\nabla - 0.1$, $\diamond - 0.2$

Зависимости намагниченности от напряженности импульсного магнитного поля M(H) при низких температурах для MnCoSi и MnCo_{0.8}Fe_{0.2}Si (рис. 2,*a*,*б*) демонстрируют ярко выраженные магнитные превращения первого рода с характерными для них особенностями. Эти особенности включают наличие полевого гистерезиса и двух разделенных (по полю) фаз, каждая из которых отличается величиной намагниченности и характером намагничивания. Одна из них – исходная смешанная (SS + FM) фаза в MnCo_{0.8}Fe_{0.2}Si (рис. 2,*б*) или чисто спиральная (SS) фаза в отожженном MnCoSi (рис. 2,*a*), другая – индуцированная «условно ферромагнитная». В обоих случаях индуцированный переход осуществляется в относительно узком диапазоне магнитных полей. Альтернативный процесс намагничивания наблюдается в Mn_{1.2}Co_{0.8}Si (рис. 2,*в*), где индуцированный магнитным полем переход сглажен и отсутствует четкая полевая граница раздела между исходной и

индуцированной фазами, т.е. этот переход относится к классу размытых фазовых переходов. Все H-T-диаграммы исследованных сплавов характеризуются снижением критических полей индуцирования при увеличении температуры. Критические поля определяли как пиковые значения зависимости $\partial M(H)/\partial H$ (рис. 3).

Под действием гидростатического давления значения критических полей уменьшаются, а величина намагниченности насыщения индуцированной фазы увеличивается в MnCoSi, $Mn_{1.2}Co_{0.8}Si$ и практически не изменяется в MnCo_{0.8}Fe_{0.2}Si (рис. 3).

3. Анализ результатов

Анализ результатов включает в себя ряд вопросов, важных как в фундаментальном плане, так и в плане практического применения магнитокалорического эффекта:

 к какому типу магнетизма (коллективизированного или локализованного) относятся исследуемые сплавы;

2) являются ли индуцированные магнитным полем состояния коллинеарными FM-структурами;

 чем обусловлено барическое возрастание намагниченности насыщения индуцированной магнитным полем фазы;

4) каков возможный механизм температурно-индуцированных переходов порядок-порядок.

При анализе настоящих экспериментальных исследований мы опирались на результаты расчетов из первых принципов немагнитной и FM-плотности электронных состояний для MnCoSi методами, описанными в [7].

I. Как видно из зависимости FM-парциальных плотностей электронных состояний от энергии – $DOS_l(E)$ (рис. 4,*a*), это соединение является проводящим

Физика и техника высоких давлений 2009, том 19, № 3

Рис. 4. Полный (total) и парциальные вклады в ферромагнитную плотность электронных состояний DOS в MnCoSi для нормальной (сплошные линии) и гидростатически сжатой при $\Delta V/V = -7\%$ (пунктирные линии) элементарной ячейки. Числами обозначены парциальные вклады в величины магнитных моментов от *s*-, *p*-, *d*-состояний (*a*) и атомов Mn, Co, Si (*б*) для нормальной (слева) и сжатой (справа) ячейки. Уровни Ферми обозначены вертикальными линиями

магнетиком, и наибольший вклад в проводимость дают *d*-состояния, поскольку на уровне Ферми $E_F \text{DOS}_d(E_F) > \text{DOS}_p(E_F) > \text{DOS}_s(E_F)$. Эти же состояния подвержены наибольшему FM-расщеплению по энергии спиновых подзон, что приводит к значительному несимметричному электронному заполнению спиновых зон (↑), (↓) и, как следствие, наибольшему вкладу *d*состояний в магнитный момент системы (рис. 4,*a*).

II. Парциальные плотности электронных состояний исходных элементов и величина соответствующих им локальных магнитных моментов приведены на рис. 4,*б*, а значения полных рассчитанных и эффективных (полученных из закона Кюри–Вейсса) FM-моментов – в таблице. Из рисунка видно, что локальный магнитный момент марганца ($\mu_{Mn} = 2.64\mu_B/f.u$) дает наибольший вклад в полный FM-момент ($\mu = 3.25\mu_B/f.u$) сплава MnCoSi. Значение этой величины ниже эффективного парамагнитного момента ($\mu_{pm} = 4.2\mu_B/f.u$) [2], но превышает экспериментальные значения магнитного момента из намагниченности насыщения индуцированной магнитным полем фазы в

Рис. 5. Изменение электронного заполнения N зон p(a), $s(\delta)$, d(e) и магнитного момента M(c) при изменении объема элементарной ячейки V в ферромагнитном (\blacksquare) и немагнитном (\bullet) состояниях. Вертикальная линия соответствует объему элементарной ячейки при атмосферном давлении

поле 85 kOe (рис. 2, рис. 3,*a*). Еще большее несоответствие наблюдается для Mn_{1.2}Co_{0.8}Si при сравнении значения парамагнитного момента $(\mu_{pm} = 3.38\mu_B / f.u)$ и магнитного момента индуцированной фазы в поле 140 kOe ($M = 1.2\mu_B / f.u$) (рис. 3,б). Напротив, в MnCo_{0 8}Fe_{0 2}Si намагниченность насыщения индуцированной фазы $M \approx 3.5 \mu_B / \text{f.u}$ (рис. 3, в) практически соответствует расчетному значению магнитного момента для FM-структуры $(M = 3.28 \mu_B / \text{f.u})$, который существенно меньше эффективного парамагнитного значения $(\mu_{pm} =$ $= 4.58 \mu_{R} / f.u$). Однако если эти расхождения носят количественный характер, то различие между барической зависимостью намагниченности насыщения индуцированной магнитным полем фазы (рис. 3) и зависимостью расчетной величины FM-момента от сжатия решетки (рис. 5) указывает на

принципиальное качественное несоответствие. Действительно, как следует из рис. 3, a, b, увеличение давления приводит к возрастанию намагниченности насыщения индуцированной фазы, при том что расчетное значение величины FM-момента μ линейно уменьшается при сжатии элементарной ячейки (рис. 5). Таким образом, стабилизирующее воздействие давления для индуцированной и спонтанной высокотемпературных фаз [8] не согласуется с результатами *ab initio* расчетов FM-поляризованной электронной структуры MnCoSi.

Т	абли	пa
т	aomi	ца

	Магнитный момент, µ _{<i>B</i>} /f.u		
Сплав	рассчитанный	эффективный	
	(ферромагнитный)	(закон Кюри–Вейсса)	
MnCoSi	3.25	4.2	
Mn _{1.2} Co _{0.8} Si	2.9	3.38	
MnCo _{0.8} Fe _{0.2} Si	3.28	4.58	

III. На наш взгляд, подобное расхождение связано с тем, что индуцированные магнитным полем переходы порядок–порядок в исследуемом нами образце не приводят к полному исчезновению антиферромагнитной компоненты полного магнитного момента, и поэтому наблюдаемая намагниченность насыщения соответствует фазе сосуществования ферромагнетизма и антиферромагнетизма, а не коллинеарной FM-структуры, для которой рассчитывался FM-момент. Отсюда следует, что возрастание электронного заполнения *d*-зоны (рис. 5), сопутствующее трансформации структуры плотности состояний при сжатии образца (рис. 6,*в*), приводит к увеличению FM-вклада фазы сосуществования (эксперимент, рис. 3,*a*,*б*) и, напротив, должно уменьшать магнитный момент коллинеарной FM-фазы (*ab initio* расчет). Подобная ситуация имеет место в системе Mn_{2-x}Fe_xAs_{0.5}P_{0.5} в области 0.5 < x < 07, где сжатие решетки подавляет FM-фазу, однако стабилизирует индуцированную магнитным полем фазу сосуществования ферромагнетизма и антиферромагнетизма [9].

Сказанное объясняет практическое отсутствие барического возрастания намагниченности насыщения индуцированной фазы в MnCo_{0.8}Fe_{0.2}Si (см. рис. 3,*в*), поскольку эта фаза, по-видимому, является коллинеарным ферромагнетиком, магнитный момент насыщения которой в поле 100 kOe ($M \approx 3.5\mu_B / f.u$) близок к расчетному значению ($\mu = 3.28\mu_B / f.u$) для коллинеарной FM-структуры.

IV. Температурно-индуцированные переходы порядок-порядок могут возникать как результат конкурирующих тенденций, порождаемых температурными флуктуациями спиновой плотности. Возрастание амплитуды этих флуктуаций приводит не только к уменьшению локальной намагниченности, но и к существенному изменению исходной структуры плотности электронных состояний. Результатом этого может стать инверсия энергетического дисбаланса [10] между двумя потенциально возможными магнитными структурами (антиферромагнитной и ферромагнитной), прежде чем наступит полный магнитный беспорядок.

Отметим в заключение, что температурное расширение кристаллической решетки и связанный с ним магнитострикционный вклад в механизм переходов порядок–порядок в нашем случае не играет существенной роли, поскольку объем кристаллохимической ячейки в исследуемых сплавах в антиферромагнитном состоянии больше, чем в ферромагнитном [3], т.е. имеет место обратная (в сравнении с тепловым расширением) тенденция в изменении параметров решетки в процессе магнитного фазового перехода между этими состояниями.

Работа выполнена в рамках конкурсного проекта ДФФД-БРФФД № 29.1/016.

- 1. C.B. Shoemaker, D.P. Shoemaker, Acta Crystal. 18, 900 (1965).
- 2. S. Nizol, H. Binczycka, A. Szytula, J. Todorovic, R. Fruchart, J.P. Senateur, D. Fruchart, Phys. Status Solidi A45, 591 (1978).
- 3. K.G. Sandeman, R. Daou, S. Ozcan, J.H. Durrell, N.D. Mathur, D.J. Fray, Phys. Rev. **B74**, 224436 (2006).
- 4. H. Binczycka, A. Szytula, J. Todorovic, T. Zaleski, A. Zieba, Phys. Status Solidi A35, K69 (1976).
- 5. Г.И. Маковецкий, А.И. Галяс, К.И. Янушкевич, В.Н. Шамбалев, А.К. Богуш, Изв. НАНБ. Сер. физ.-техн. наук № 3, 10 (2000).
- 6. А.Ф. Вуль, Б.М. Тодрис, ПТЭ № 5, 208 (1989).
- 7. А.В. Головчан, И.Ф. Грибанов, Ю.Д. Заворотнев, Л.И. Медведева, Изв. РАН. Сер. физ. **72**, 1392 (2008).
- 8. Л.И. Медведева, УФЖ **24**, 1752 (1979).
- 9. В.И. Вальков, Д.В. Варюхин, А.В. Головчан, И.Ф. Грибанов, А.П. Сиваченко, В.И. Каменев, Б.М. Тодрис, ФНТ **34**, 927 (2008).
- 10. В.И. Вальков, А.В. Головчан, ФНТ 33, 1109 (2007).

В.І. Вальков, І.Ф. Грибанов, Є.О. Дворніков, О.П. Сиваченко, Б.М. Тодрис, О.В. Головчан, В.І. Мітюк

НИЗЬКОТЕМПЕРАТУРНІ ПЕРЕХОДИ ПОРЯДОК–ПОРЯДОК У ДЕЯКИХ СИЛІЦІДАХ МАРГАНЦЮ З ОРТОРОМБІЧНОЮ КРИСТАЛІЧНОЮ СТРУКТУРОЮ ТИПУ Со2Р

Досліджено вплив тиску, температури і сильного магнітного поля на стійкість низькотемпературної (HT) гелікоїдальної фази та особливості спонтанного і індукованого магнітним полем перетворення між гелікоїдальним і феромагнітним (FM) станами у магнітокалоричних сплавах $Mn_{2-x}Co_xSi$ ($0 \le x \le 0.2$) і $MnCo_{1-y}Fe_ySi$ ($0 \le y \le 0.2$). З перших принципів розраховано електронні структури і магнітні характеристики цих сплавів і проведено їх порівняння з експериментом. На базі отриманих результатів запропоновано механізм температурно-індукованих переходів порядок–порядок у розглянутих силіцідах, заснований на інверсії енергетичного дисбалансу між спіральним і FM-станами внаслідок спін-флуктуаційного перенормування первинної HT-структури густини електронних станів.

Ключові слова: індуковані фазові перетворення, магнітні фазові перетворення під тиском, щільність електронних станів

V.I. Valkov, I.F. Gribanov, E.A. Dvornikov, A.P. Sivachenko, B.M. Todris, A.V. Golovchan, V.I. Mitsiuk

LOW TEMPERATURE ORDER–ORDER PHASE TRANSITIONS IN SOME MANGANESE-COBALT SILICIDES WITH ORTHORHOMBIC CRYSTAL STRUCTURE OF Co₂P TYPE

Influence of pressure, temperature and a high magnetic field on stability of low-temperature (LT) helicoidal phase and peculiarities of the phase transition between heli-

coidal and ferromagnetic (FM) phases induced by magnetic field in magnetocaloric alloys $Mn_{2-x}Co_xSi$ ($0 \le x \le 0.2$) and $MnCo_{1-y}Fe_ySi$ ($0 \le y \le 0.2$) is investigated. Electronic structures and magnetic characteristics of the alloys are calculated from the first principles and their comparison with experiment is done. On the basis of the obtained results a mechanism is proposed for the temperature-induced order–order phase transitions in the considered silicides, based on inversion of power disbalance between spiral and FM states due to spin-fluctuation renormalization of the initial LT density of electronic states.

Keywords: induced phase transitions, magnetic phase transitions under external pressure, density of electronic states

Fig. 1. Temperature dependences of magnetization *M* for H = 9.7 kOe and of reversible susceptibility χ^{-1} for H = 8.6 kOe of the Mn_{2-x}Co_xSi (*a*) and MnCo_{1-y}Fe_ySi (δ) system alloys: $\circ - x = 0.8$, $\Delta - 0.9$, $\nabla - 1.0$; $\circ - y = 0$, $\Delta - 0.05$, $\nabla - 0.1$, $\diamond - 0.2$

Fig. 2. Field dependences of magnetization under atmospheric pressure for the alloys: a - MnCoSi, T = 273 (1), 230 (2), 219 (3), 207 (4), 195 K (5); $\delta - \text{MnCo}_{0.8}\text{Fe}_{0.2}\text{Si}$ for T = 20 (1), 90 (2), 160 (3), 300 K (4); $e - \text{Mn}_{1.2}\text{Co}_{0.8}\text{Si}$ for T = 308 (1), 167 (2), 80 K (3)

Fig. 3. Field dependences of magnetization *M* and susceptibility dM/dH for the alloys: *a* – MnCoSi, *T* = 219 K and *P* = 0 (*I*), 0.5 (*2*), 1.5 kbar (*3*); δ – Mn_{1.2}Co_{0.8}Si for *T* = 263 K and *P* = 0.15 (*I*), 0.5 (*2*), 1.5 kbar (*3*); ϵ – MnCo_{0.8}Fe_{0.2}Si for *T* = 20 K and *P* = 0.15 (*I*) and 1.5 kbar (*2*)

Fig. 4. Total and partial contributions to ferromagnetic density of electronic states of MnCoSi for normal (solid lines) and hydrostatically compressed at $\Delta V/V = -7\%$ (dotted lines) unit cell. The numerals stand for partial contributions to magnetic-moment values from *s*-, *p*-, *d*-states (*a*) and atoms Mn, Co, Si (δ) for normal (to the left) and compressed (to the right) cells. The Fermi levels are shown by vertical lines

Fig. 5. Changes in electron filling N of bands p(a), $s(\delta)$, $d(\epsilon)$ and in magnetic moment $M(\epsilon)$ with changes in unit-cell volume V in ferromagnetic (\bullet) and nonmagnetic (\bullet) states. The vertical line corresponds to unit-cell volume under atmospheric pressure