PACS: 73.61.At, 75.20.En

В.А. Хохлов

ВЛИЯНИЕ ПОДЛОЖКИ НА ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА ПЛЕНОК NdSrMnO₃-СИСТЕМЫ С ДЕФИЦИТОМ ИОНОВ МАРГАНЦА

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: ayup@levch.fti.ac.donetsk.ua

Статья поступила в редакцию 3 августа 2009 года

Изучены магнитные и электропроводящие свойства пленок $Nd_{0.55}Sr_{0.45}Mn_{1-x}O_{3-\delta}$, где δ точно не определено. Пленки напылены на подложки $SrTiO_3$ и LaAlO₃, которые создают различные по знаку напряжения в пленках на интерфейсе. Показано, что при температуре 300 К обе пленки обладают довольно высокой проводимостью и не являются парамагнитным изолятором, как должно быть по фазовой диаграмме этого соединения. Температурный ход сопротивления с уменьшением температуры носит полупроводниковый характер и имеет максимум R_{max} при температуре T_{max} , значительно отличающейся от температуры Кюри. В исследованных пленках при высоких температурах наблюдался отрицательный магнитный момент. Обсуждаются возможные причины этого явления.

Ключевые слова: манганиты, тонкие пленки, электросопротивление

В манганитах $Nd_{1-x}Sr_xMnO_3$ существует различие в ионных радиусах Nd^{3+} и Sr^{2+} (около 0.15 Å), что приводит к уширению зоны с увеличением концентрации ионов Nd^{3+} . С изменением концентрации неодима от x = 0 до x = 1 возникают различные спиновые, зарядовые и орбитальные фазы – от ферромагнитного металла (ФММ) до антиферромагнитного изолятора [1]. Наиболее интересен состав с x = 0.5, в котором наблюдается зарядовоупорядоченная (СЕ) фаза. Разница энергий между ФММ-, СЕ-фазами и фазой антиферромагнитного металла (АФМ) невелика, т.е. основное состояние является неустойчивым и весьма чувствительным к степени деформации решетки, химической однородности, кластеризованности структуры и т.д. Особый интерес вызывают пленки манганитов $Nd_{1-x}Sr_xMnO_3$ ввиду их возможного практического применения. Поэтому, несмотря на большое количество публикаций, посвященных изучению таких пленок [1–5], интерес к ним остается значительным. В данной работе представлены экспериментальные результаты исследований магнитного момента и сопротивления пленок, полученных на подложках SrTiO₃ (STO) и LaAlO₃ (LAO), которые создают различные по знаку напряжения на интерфейсе пленки (граница пленка–подложка).

Пленки были получены с помощью магнетронного распыления постоянного тока из керамической мишени. Мишень изготавливали по обычной керамической технологии с небольшим дефицитом марганца. Предполагаемая химическая формула мишени (по закладке компонентов) $Nd_{0.5}Sr_{0.5}Mn_{1-x}O_{3-y}$ (x < 0.1). Рентгенографические исследования мишени показали, что она имеет орторомбическую симметрию с параметрами решетки a = 5.4302, b = 7.6177 и c = 5.4860 Å.

Дополнительные исследования мишени на растровом электронном микроскопе JSM-6490LV (JEOL, Япония) с применением рентгеновского микроанализатора показали, что ее химический состав ближе к формуле Nd_{0.55}Sr_{0.45}Mn_{1-x}O_{1-y} ($x \le 0.1$). Пленки HC-7 (на подложке STO) и HC-8 (на подложке LAO) напыляли одновременно. Температура подложек составляла 650°C. Отжиг пленок проводили на воздухе при T = 900°C в течение 3 h. Толщина пленок составляла 120 ± 20 nm. По данным рентгеновской дифракции (рис. 1), пленки были однофазными с эпитаксиальным ростом «куб на куб». У пленки HC-7 параметр a = 3.774 Å (у подложки STO a = 3.897 Å), у пленки HC-8 a = 3.912 Å (у подложки LAO a = 3.789 Å). Таким образом, на интерфейсе пленки на подложке STO формируются растягивающие напряжения, а на подложке LAO – сжимающие.

Исследования магнитного момента пленок проводили на магнитометре SQUID, а сопротивление измеряли обычным четырехзондовым методом. Рентгенограммы получали на установке ДРОН-3.

Рис. 1. Рентгенограммы пленок HC-7 (*a*) и HC-8 (б). Интенсивные линии – сигналы от подложки, малоинтенсивные – от пленки. Для HC-7 сигнал от пленки находится в области углов 20, больших, чем для подложки, а для HC-8 – наоборот

Рис. 2. Зависимости магнитного момента пленок HC-7 (*a*) и HC-8 (*б*) от величины внешнего поля, полученные при различных температурах, К: I - 10, 2 - 50, 3 - 100, 4 - 150, 5 - 200, 6 - 250, 7 - 300

На рис. 2 представлены полевые зависимости магнитного момента, измеренные при различных температурах, для образцов НС-7 и НС-8. Внешнее магнитное поле было направлено вдоль плоскости пленок. Из рис. 2 видно, что во всем диапазоне исследованных температур кривые m(H) представляют собой сумму некоторой спонтанной величины магнитного момента и практически линейной по полю (в больших полях) зависимости m(H), характерной для антиферромагнетика или для парамагнетика. Экстраполяция зависимости *m*(*H*) из больших полей к нулевому полю дает величину спонтанного магнитного момента m₀. Эти значения при 10 К для пленки HC-7 оказались равными 2.42 µ_B/f.u., а для HC-8 – 1.17 µ_B/f.u. Теоретическое значение магнитного момента в случае ферромагнитного упорядочения ионов Mn^{3+} и Mn^{4+} равно 3.5 $\mu_B/f.u.$ Из этих данных можно сделать вывод, что при низких температурах состояние пленок является магнитно-двухфазным (МДФ). В антиферромагнитной или парамагнитной матрице существуют ферромагнитные (ФМ) кластеры, причем размер последних с понижением температуры увеличивается.

На рис. З показаны температурные зависимости m_0 для обеих пленок. Точку Кюри T_C определяли путем экстраполяции наиболее крутой части $m_0(T)$ к нулевому значению магнитного момента. В пленке HC-7 $T_C \sim 370^{\circ}$ С, а в HC-8 $T_C \sim 320^{\circ}$ С. Отметим, что значение T_C , определенное по такой методике, для HC-8 явно занижено из-за присутствия сильного диамагнитного момента, который не позволяет определить истинное значение m_0 . Кроме того, при высоких температурах (T = 250 K для HC-7 и 150 K для HC-8) падение спонтанного магнитного момента с повышением температуры заметно снижается. Во всяком случае, можно отметить, что в пленках при 300 K существует ферромагнитный момент.

Рис. 3. Зависимости спонтанного магнитного момента пленок HC-7 (*a*) и HC-8 (δ) от температуры. Экстраполяция крутой части зависимости к нулевому значению m_0 принята за точку Кюри T_C

Рис. 4. Зависимости m(1/T) пленок HC-7 (*a*) и HC-8 (*б*), полученные при высоких температурах в различных магнитных полях *H*, Oe: 1 - 10000, 2 - 5000, 3 - 1000, 4 - 500, 5 - 100

Особый интерес представляет поведение магнитного момента исследованных пленок при высоких температурах (рис. 4). В образце HC-7 при 300 К магнитный момент растет с увеличением поля до 5 kOe, а в поле 10 kOe имеет то же значение, что и при 5 kOe. В образце HC-8 поведение магнитного момента носит сложный характер. Так, в полях 100, 500 и 1000 Oe зависимость m(1/T) имеет излом в районе 200 К. Величины магнитного момента при 300 К совпадают при H = 1 и 5 kOe, а в поле 10 kOe он становится меньше, чем при H = 0.5 kOe. Таким образом, на основании данных, представленных на рис. 2 и 4, можно сделать вывод, что в пленке HC-8 при высоких температурах появляется диамагнитный момент. Восприимчивость χ

Рис. 5. Температурная зависимость восприимчивости пленки HC-8. $\chi = \Delta m(\text{emu})/H(\text{Oe})$

этого образца в функции температуры представлена на рис. 5. Величина $\chi(300 \text{ K}) = 1.5 \cdot 10^{-8} \text{ ети/Oe} = 6.3 \cdot 10^{-2} (про$ $тив 6.6-0.82 \cdot 10^{-7} для меди).$

На рис. 6 показаны зависимости R(T), полученные для обоих образцов без внешнего поля и в поле 5 kOe для пленки HC-8. Видно, что с понижением температуры сопротивление растет, носит полупроводниковый характер и достигает максимума при температуре T_{max} . Для обеих пленок эти температуры близки и составляют в отсутствие внешнего поля 116 K для HC-7 и 123 K для HC-8. При дальней-

шем понижении температуры сопротивление для обоих образцов падает по закону, характерному для металлической проводимости. Отношение $R_{\rm max}/R_{300\rm K} = 109$ для HC-7 и 34 — для HC-8. Интересно отметить, что для пленки HC-8 величина магнитосопротивления носит знакопеременный характер, который ранее не наблюдался в этих манганитах.

Таким образом, в результате проведенных исследований было установлено: 1. Во всем изученном диапазоне температур существует ферромагнитная компонента магнитного момента, причем абсолютная величина ее в пленке HC-7 почти в 2 раза больше, чем в пленке HC-8, в которой рассогласование параметров решетки пленка–подложка значительно больше и носит противоположный знак по сравнению с HC-7.

Рис. 6. Температурные зависимости сопротивления пленок HC-7 (*a*) и HC-8 (*б*): $1 - R_H$, H = 5 kOe; $2 - R_0$, H = 0; $3 - (R_0 - R_H)/R_0$

2. При высоких температурах в обеих пленках наблюдается снижение скорости изменения зависимости $m_0(T)$. Из анализа графиков можно предположить, что существование ферромагнитной фазы должно наблюдаться и при температуре выше T_C . Это возможно в случае образования магнитных кластеров на дефектах [6].

3. В обеих пленках при высоких температурах наблюдается диамагнитная составляющая магнитного момента, которая очень мала для пленки HC-7 по сравнению с HC-8. Причину появления диамагнетизма в наших пленках, вероятно, можно объяснить, если предположить, что вблизи интерфейса существует некоторый промежуточный слой, толщина и свойства которого зависят от степени рассогласования параметров решетки пленки и подложки. Такой слой наблюдался в [5], правда, там он носил ферромагнитный характер.

Диамагнетизм при высоких температурах наблюдался в металлическом стекле [7], где было показано, что особая связь между ФМ-частицами и аморфной матрицей может приводить к гигантскому диамагнитному отклику. В нанокристаллическом образце манганита [8] также наблюдался диамагнетизм при температуре выше T_C . Авторы предположили, что он может быть вызван метастабильной нанокристаллической конфигурацией, приводящей к локализации волновых функций электронов с большим радиусом орбит, и возникает в сильно неоднородном напряженном образце. Тогда формирование локализованных электронных орбит радиусом порядка десятков нанометров и ограниченных дислокационной сеткой вполне возможно.

Т.А. Онищенко [9] показал, что макроскопическая неоднородность кристаллов, связанная, например, с деформациями или другими причинами, приводит к зависимости электронного спектра от пространственных координат. Если глубина пространственной модуляции энергии намного превышает ширину зоны E_0 и если запрещенные энергетические зоны e_g достаточно широки (что в нашем узкозонном материале вполне возможно), то волновые функции электронов должны быть локализованы и могут порождать диамагнетизм, на несколько порядков больший, чем диамагнетизм Ландау.

Из вышесказанного следует, что необходимым условием существования диамагнетизма является локализация волновых функций электронов, по крайней мере в отдельных, малого объема участках исследованного образца. Для этого нужна макроскопическая неоднородность образца (или слоя), вызванная напряжениями с образованием сетки дислокаций или другими причинами.

В наших образцах на интерфейсе за счет рассогласования размеров элементарных ячеек пленки и подложки возникают напряжения, образуя сетку дислокаций. Известно, что в манганитах движение носителей тока осуществляется по внутриплоскостным цепочкам Mn–O–Mn. Из-за дефицита ионов марганца и кислорода эти цепочки будут рваться гораздо чаще, чем в бездефицитных образцах, образуя отдельные хорошо проводящие области. Совокупность областей, ограниченных дислокационной сеткой с хорошей проводимостью, может создать необходимую пространственную модуляцию энергии в отдельных областях для локализации электронов. Орбитальный момент таких локализованных электронов, возможно, и является источником диамагнетизма в тонком слое образцов вблизи интерфейса.

4. Поведение R(T) в наших пленках характерно для магнитных полупроводников. Наличие максимума на этих кривых указывает на существование в них МДФ-состояния, вызванного сильным *s*-*d*-обменом [10]. Так как при высоких температурах сопротивление образцов низкое, можно предположить, что в проводящей ферромагнитной матрице расположены АФМкластеры, лишенные носителей заряда – дырок. Рассеяние носителей заряда, уменьшающее их подвижность и образование хвоста их зоны, состоящего из локализованных состояний, определяет температурный ход сопротивления манганитов. Под действием магнитного поля происходит делокализация носителей заряда из хвоста зоны и увеличение их подвижности, что и приводит к колоссальному магнитосопротивлению.

Обычно магнитосопротивление отрицательно и не меняет свой знак во всем интервале температур. В нашем случае для пленки HC-8 смена знака магнитосопротивления происходит в районе 160 К, т.е. там, где зависимость $m_0(T)$ начинает выполаживаться и происходит конкуренция между ферромагнитным и диамагнитным моментами. Вероятно, именно наличие диамагнитного момента приводит при высоких температурах не к делокализации электронов проводимости в поле, а к еще большей их локализации, чем в отсутствие поля.

В заключение автор благодарит В.П. Пащенко за предоставление мишени, а Ю.М. Николаенко за выполнение напыления пленок.

- 1. H. Kawano, R. Kajimoto, H. Yashizawa, Y. Tomioka, H. Kuwahara, Y. Tokura, Phys. Rev. Lett. 78, 4253 (1997).
- 2. Y. Tokura, Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).
- R. Kajimoto, H. Yoshizawa, H. Kuwahara, Y. Tokura, K. Ohoyama, M. Ohashi, Phys. Rev. B60, 9506 (1999).
- 4. C. Cui, T.A. Tyson, Zh. Chen, Zh. Zhong, Phys. Rev. B68, 214417 (2003).
- V.G. Prokhorov, G.G. Kaminsky, V.A. Komashko, Y.P. Lee, S.Y. Park, Y.H. Hyun, J.B. Kim, J.S. Park, V.L. Svetchnikov, V.P. Pashchenko, V.A. Khokhlov, Fiz. Nizk. Temp. 33, 889 (2007).
- 6. Н.Н. Лошкарева, А.В. Королев, Г.И. Арбузова, Н.И. Солин, А.М. Балбашов, Н.В. Костромитина, ФММ **103**, 261 (2007).
- 7. Y.T. Wang, M.X. Pan, D.Q. Zhao, W.H. Wang, W.L. Wang, Appl. Phys. Lett. 85, 2881 (2004).
- 8. V. Marcovich, I. Fita, R. Ruznak, C. Martin, K. Kikoin, A. Wisniewski, S. Hebert, A. Maegnan, G. Gorodetsky, Phys. Rev. **B74**, 174408 (2006).
- 9. *Т.А. Онищенко*, Письма в ЖЭТФ **33**, 93 (1981).
- 10. Э.Л. Нагаев, УФН 166, 833 (1996).

В.О. Хохлов

ВПЛИВ ПІДКЛАДКИ НА ЕЛЕКТРИЧНІ І МАГНІТНІ ВЛАСТИВОСТІ ПЛІВОК NdSrMnO₃ СИСТЕМИ З ДЕФІЦИТОМ ІОНІВ МАРГАНЦЮ

Вивчено магнітні і електропровідні властивості плівок Nd_{0.55}Sr_{0.45}Mn_{1-x}O_{3- δ}, де δ точно не визначене. Плівки були напилені на підкладки SrTiO₃ і LaAlO₃, які створюють різні за знаком напруги в плівках на інтерфейсі. Показано, що при температурі 300 К обидві плівки володіють досить високою провідністю і не є парамагнітним ізолятором, як повинно бути за фазовою діаграмою цього з'єднання. Температурний хід опору зі зменшенням температури носить напівпровідниковий характер і має максимум R_{max} при температурі T_{max} , значно відмінній від температури Кюрі. У досліджених плівках при високих температурах спостерігався негативний магнітний момент. Обговорюються можливі причини цього явища.

Ключові слова: манганіти, тонкі плівки, електроопір

V.A. Khokhlov

INFLUENCE OF SUBSTRATE ON ELECTRICAL AND MAGNETIC PROPERTIES OF THE FILMS OF NdSrMnO₃ SYSTEM WITH MANGANESE ION DEFICIENCY

Magnetic and electrical properties of Nd_{0.55}Sr_{0.45}Mn_{1-x}O_{3- δ} films, where δ is not defined, have been studied. The films were sputtered on SrTiO₃ and LaAlO₃ substrates which form stresses of opposite sign in the film interface. It is shown that the both films display rather high conductivity at 300 K and are not paramagnetic insulator as it must be from its phase diagram. Temperature dependence of the resistance shows semiconductor behavior with temperature fall and has a maximum R_{max} at temperature T_{max} which differs significantly from the Curie temperature. A negative magnetic moment is revealed in the films at high temperatures. Possible origins of this phenomenon are discussed.

Keywords: manganites, thin films, electrical resistance

Fig. 1. X-ray pattern for the films HC-7 (*a*) and HC-8 (δ). Intensive lines correspond to signals from substrate, and weak lines are signals from the film. Signal for the film HC-7 lies in the field of angles 20 higher than those for the substrate, and for the film HC-8 it lies in the field below substrate

Fig. 2. Magnetic field dependences of magnetic moment for the films HC-7 (*a*) and HC-8 (δ) at different temperatures, K: 1 - 10, 2 - 50, 3 - 100, 4 - 150, 5 - 200, 6 - 250, 7 - 300

Fig. 3. Temperature dependences of spontaneous magnetic moment for the films HC-7 (*a*) and HC-8 (δ). Extrapolation from steep part of this dependence to zero value of m_0 gives the Curie temperature T_C

Fig. 4. Dependences m(1/T) for the films HC-7 (*a*) and HC-8 (δ) at high temperatures for different magnetic fields *H*, Oe: 1 - 10000, 2 - 5000, 3 - 1000, 4 - 500, 5 - 100

Fig. 5. Temperature dependence of the susceptibility of the film HC-8

Fig. 6. Temperature dependences of resistance for the films HC-7 (*a*) and HC-8 (δ): $1 - R_H$, H = 5 kOe; $2 - R_0$, H = 0; $3 - (R_0 - R_H)/R_0$