PACS: 81.20.Sh

Г.С. Баронин¹, А.М. Столин², Д.В. Пугачев¹, Д.О. Завражин¹, Д.Е. Кобзев¹, Ю.О. Козлукова¹, А.К. Разинин¹

МОЛЕКУЛЯРНО-РЕЛАКСАЦИОННЫЕ И СТРУКТУРНО-МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОМПОЗИТОВ НА ОСНОВЕ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА, ПОЛУЧЕННЫХ ЖИДКО- И ТВЕРДОФАЗНОЙ ЭКСТРУЗИЕЙ

¹Тамбовский государственный технический университет ул. Советская, 106, г. Тамбов, 392000, Россия

²Институт структурной макрокинетики и проблем материаловедения РАН Институтский проезд, 6, г. Черноголовка, Московская область, Россия E-mail: profnoctt@mail.tstu.ru

Путем сравнительного изучения молекулярно-релаксационных, структурных и физико-механических характеристик композитов на основе сверхвысокомолекулярного полиэтилена (СВМПЭ), полученных жидкофазной (ЖФЭ) и твердофазной (ТФЭ) экструзией, выявлены закономерности формирования молекулярно-топологического строения и свойств аморфно-кристаллического полимера псевдосетчатого строения в результате переработки в твердой фазе. Экспериментальные результаты объяснены с позиций научных представлений, полученных вследствие анализа данных термомеханической спектроскопии (ТМС), рентгеноструктурного анализа и других методов изучения технологического процесса ТФЭ СВМПЭ-композитов.

Сверхвысокомолекулярный полиэтилен имеет уникальные физикохимические свойства и находит разнообразное применение в качестве конструкционного материала, обладающего исключительно высокими прочностными характеристиками, повышенной ударо- и износостойкостью, низким коэффициентом трения, высокой морозостойкостью и рядом других физикомеханических характеристик. Широкому применению СВМПЭ с молекулярной массой свыше 1000.000 препятствует трудность его переработки вследствие высокой вязкости расплава. Материал не переходит в вязкотекучее состояние даже при температуре выше точки плавления его кристаллической фазы, а остается деформационно-упругим. Основным методом переработки СВМПЭ в настоящее время является горячее прессование, которое отличается длительным технологическим циклом и высокой энергоемкостью.

Последние годы характеризуются интенсивными исследованиями в области получения и переработки СВМПЭ в изделия. Интенсивно развивается и рынок продукции из этого материала.

Твердофазные технологии переработки полимеров в изделия, основанные на развитии пластической деформации материала в условиях высокого гидростатического давления, являются технологиями будущего, так как относятся к энергосберегающим [1]. Возможность использования этих технологий для переработки СВМПЭ и композиционных материалов на его основе (в том числе нанокомпозитов) позволяет устранить недостатки существующей жидкофазной технологии (ЖФТ). Переработка таких полимерных систем воздействием давления в твердой фазе требует новых технологических подходов и глубоких исследований структуры материала и особенностей нового технологического процесса [2]. Настоящая работа посвящена изучению особенностей структуры, молекулярно-релаксационных и структурно-механических характеристик СВМПЭ-композитов, полученных способами ЖФЭ и ТФЭ. В качестве модифицирующих СВМПЭ-добавок использовали диборид (TiB₂) и карбид (TiC) титана – продукты самораспространяющегося высокотемпературного синтеза (СВС-технология, Институт структурной макрокинетики и проблем материаловедения РАН (ИСМАН), г. Черноголовка).

Для изучения молекулярно-топологического строения, релаксационных и структурных характеристик композитов на основе СВМПЭ, полученных методами ТФЭ и ЖФТ, в работе использовали ТМС, разработанную в Институте проблем химической физики РАН [3,4].

Рентгеноструктурные исследования образцов проводили с использованием рентгеновского дифрактометра ДРОН-3.0 в режиме на отражение в разных диапазонах углов дифракции в Си K_{α} -излучении, монохроматизированном Ni-фильтром. Для устранения вертикальной расходимости применяли щель Соллера с расходимостью 1.5°. В ряде случаев использовали модернизированную коллимацию, позволяющую освободить дифракционный спектр от «паразитного» излучения, особенно в малоугловой области спектра.

Смешение модифицирующих веществ TiC и TiB₂ с порошкообразным СВМПЭ проводили в шаровой мельнице в течение 1 h. Частота вращения барабана 115 rev/min. После перемешивания композиций их таблетировали при давлении 100 MPa. Дальнейшую монолитизацию СВМПЭ методом горячего прессования проводили на экспериментальном гидравлическом прессе усилием 12 tf при температуре пресс-формы 220°C. Последующее охлаждение материала осуществляли до комнатной температуры в течение 2 h при давлении 200 MPa.

Экспериментальные исследования особенностей ТФЭ СВМПЭ-композитов проводили на экспериментальной установке с ячейкой высокого давления, разработанной в Тамбовском государственном техническом университете [1], а также в лаборатории пластического деформирования ИСМАН РАН (г. Черноголовка), на машине «Инстрон» при различных скоростях выдавливания в диапазоне v = 2-200 mm/min.

Прочностные свойства в условиях напряжения среза образцов СВМПЭ, полученных ЖФТ и ТФЭ, оценивали на разрывной машине с использованием специального приспособления типа «вилка» при скорости перемещения подвижного зажима машины 50 mm/min. Испытания на микротвердость проводили на отечественном приборе ПМТ-3. Нагружение осуществляли грузами в 0.01 и 0.1 kgf. Перед испытанием на образцы напыляли тонкий слой алюминия. Измеряли длину диагонали отпечатка и подсчитывали величину твердости H_{μ} как отношение нагрузки к площади отпечатка:

$$H_{\mu} = \frac{P}{F} = \frac{2P\sin\frac{\alpha}{2}}{d^2} = \frac{1.854}{d^2},$$

где α – угол при вершине между противолежащими гранями четырехгранной с квадратным основанием пирамиды, $\alpha = 136^\circ$; *P* – нагрузка, kgf; *d* – длина диагонали, mm.

В основе ТМС-метода лежат два фундаментальных положения, характеризующих поведение макромолекул полимера, помещенного в переменное во времени температурное поле. Первое положение – сегментальная релаксация макромолекул начинается и заканчивается строго в соответствии с закономерностями Вильямса–Ландела–Ферри и Каргина–Слонимского [5,6]. Оно предполагает их последовательный в порядке увеличения молекулярной массы полимергомологов переход в режим молекулярного течения.

Второе положение заключается в том, что в момент достижения полимергомологом температуры текучести в нагруженном полимере за счет распада физической сетки и скачкообразного снижения модуля материала происходит деформационный скачок, пропорциональный весовой доле этих гомологов в полимере [4].

В настоящей работе анализ термомеханических испытаний СВМПЭ-композиций показан на примере полимерной системы СВМПЭ + 1 mass fr. TiB₂.

Термомеханическая кривая (ТМК) полимерной композиции СВМПЭ + + 1 mass fr. TiB₂ типична для топологически полиблочного полимера псевдосетчатого строения его матричного аморфного блока (рис. 1).

Сегментальная релаксация межузловых цепей в псевдосетке аморфного блока начинается при $T_{gl} = -37^{\circ}$ С (т. *В* на ТМК) и заканчивается при $T_1 = 81^{\circ}$ С

Рис. 1. Термомеханическая кривая для системы СВМПЭ + 1 mass fr. TiB₂, полученной ЖФТ при T = 220°C. Направление испытания \perp направлению прессования (т. *C*). Их молекулярная масса рассчитывается из анализа ТМК (кривая *BC*). Среднечисленная $M_{\text{av.n}}$ и средневесовая $M_{\text{av.w}}$ молекулярные массы межузловых цепей составляют: $M_{\text{av.n}} = 173800$ и $M_{\text{av.w}} = 263100$. Коэффициент полидисперсности K = 1.51, их весовая доля $\varphi_a = 0.30$.

Узлами разветвления аморфного блока являются кристаллиты СВМПЭ с температурой начала плавления T_{melt} (т. *D* на ТМК), коэффициентом теплового расширения $\alpha_i = 166.7 \cdot 10^{-5} \text{ deg}^{-1}$, молекулярной массой закристаллизованных фрагментов $M_i = 12600$ и их весовой долей $\varphi_i = 0.07$ (таблица).

Таблица

Характеристики	Скорость выдавливания СВМПЭ-композита, mm/min					
СВМПЭ+	0 (ЖФТ)		5 (ТФЭ)		100 (ТФЭ)	
+ 1 mass fr. TiB ₂	()	(\perp)		(\perp)		(\perp)
Аморфный блок-матрица псевдосетчатого строения						
$T_{\rm gl}, {}^{\circ}{\rm C}$	-37	-40	-25	-32	-22	-38
$a 10^5 dog^{-1}$	14.7	15.3	7.62	12.3	4.52	12.1
a·10, deg	33.3	52.4	33.6	71.4	23.3	37.0
V_f	0.132	0.259	0.193	0.427	0.141	0.176
$M_{\rm av.n} \cdot 10^{-3}$	173.8	128.2	593.5	143.0	337.2	270.9
$M_{\rm av.w} \cdot 10^{-3}$	263.1	207.9	928.7	202.7	500.5	380.8
K	1.51	1.62	1.57	1.42	1.49	1.41
φ_a	0.30	0.25	0.59	0.18	0.21	0.24
Кристаллические блоки-узлы разветвления псевдосетки						
T_{melt} , °C	111	120	133–146	54-121	107, 122, 138	59, 74, 116
$\alpha_i \cdot 10^5$, deg ⁻¹	166.7	142.9	457-48.3	178-222	202, 758, 187	78, 190, 433
$M_i \cdot 10^{-3}$	12.6	20.0	5.0-10.0	3162-3.6	2.5, 7.9, 12.6	6.3, 631, 5.6
φ _i	0.07	0.04	0.08-0.03	0.14-0.08	0.05, 0.12, 0.02	0.02, 0.08, 0.07
Кластерный блок псевдосетчатого строения						
$T_{\rm cl}$, °C	130	141	163	133	157	130
$M_{\rm av.n(cl)} \cdot 10^{-3}$	559.7	779.3	215.8	1109.8	1985.1	1652.5
$M_{\rm av.w(cl)} \cdot 10^{-3}$	860.0	1167.5	310.2	1649.7	3071.3	2591.6
K	1.57	1.50	1.44	1.49	1.55	1.57
φ _{cl}	0.46	0.62	0.22	0.50	0.52	0.58
Кластерный блок-узел разветвления псевдосетки						
$T'_{\rm cl}$, °C	278	288	296	300	307	295
$M'_{ m cl} \cdot 10^{-3}$	501.2	125.9	501.2	125.9	125.9	10.0
φ _{cl}	0.17	0.09	0.08	0.10	0.08	0.01
$T_{\text{yield}}, ^{\circ}\text{C}$	327	321	336	334	340	312
Усредненная по блокам масса СВМПЭ						
$M_{W} \cdot 10^{-3}$	560.6	788.0	657.0	1316.7	1713.6	1645.6

Молекулярно-топологическое строение образцов системы СВМПЭ +
+ 1 mass fr. TiB ₂ , полученных по жидко- и твердофазной технологиям
(λ _{extr} = 2.07), по данным ТМС

Другим типом узлов являются полиассоциативные структуры – кластеры. В композиции СВМПЭ + 1 mass fr. TiB₂ обнаружено два типа таких структур – низкотемпературный кластерный блок псевдосетчатого строения и высокотемпературный кластерный блок.

При температуре $T_{cl} = 130^{\circ}$ С в т. *К* на ТМК СВМПЭ начинается сегментальная релаксация межузловых цепей в сетке низкотемпературного блока. Их среднечисленная и средневесовая молекулярные массы соствляют: $M_{av.n(cl)} = 559700$ и $M_{av.w(cl)} = 860000$, коэффициент полидисперсности K = 1.57, весовая доля $\varphi_{cl} = 0.46$.

Узлами разветвления в псевдосетке высокотемпературного кластерного блока являются аморфные полиассоциаты из более упорядоченных фрагментов макромолекул СВМПЭ – скорее всего на поверхности частиц TiB₂. Их сегментальная релаксация начинается при температуре $T_{cl} = 278$ °C (т. *C'*) и заканчивается началом молекулярного течения при $T_{yield} = 327$ °C. Молекулярная масса этих цепей $M'_{cl} = 501200$ и весовая доля $\varphi'_{cl} = 0.17$.

В таблице через V_f обозначен относительный свободный объем полимера; λ_{extr} – экструзионное отношение или степень деформации в режиме ТФЭ СВМПЭ-композита.

С целью получения информации о возможном протекании при традиционной технологии переработки СВМПЭ изотропных-анизотропных превращений топологической структуры, связанных с ориентацией продольной оси кристаллитов вдоль потока его расплава и фиксации ее после охлаждения, проведен анализ полимера при взаимно перпендикулярной ориентации векторов термомеханического нагружения и горячего прессования.

При анализе полученных экспериментальных данных установлено, что полимерный композит СВМПЭ + 1 mass fr. TiB₂ в процессе переработки через стадию расплава лишь незначительно (не более 10%) изменяет свою степень изотропности.

Результаты термомеханического анализа системы CBMПЭ + 1 mass fr. TiB₂ после TФЭ при скоростях 5 и 100 mm/min представлены в таблице. В случае ТФЭ при 5 mm/min, в отличие от ЖФТ, в полимере при соосной ориентации векторов обнаружена кристаллическая структура двух модификаций, различающихся температурой начала плавления, скоростью этого процесса и весовой долей цепей, составляющих каждую из модификаций.

Общий анализ полимерной системы при взаимно перпендикулярной ориентации векторов показал, что существенные изменения произошли в количественном содержании межузловых цепей матричного аморфного блока, явившегося результатом массопереноса части этих цепей в структуру более жесткоцепных блоков в процессе ТФЭ, т.е. в кластерный блок псевдосетчатого строения. При этом содержание высокотемпературного кластерного блока сохраняется неизменным, как и при ЖФТ. Можно предположить, что последние структурные изменения являются результатом участия малых

Рис. 2. Концентрационные зависимости прочности в условиях среза τ_{cut} системы СВМПЭ + TiC, полученной ЖФТ (*1*) и ТФЭ при $\lambda_{extr} = 2.07$, $T_{extr} = 22^{\circ}C$ (*2*) и $T_{extr} = 90^{\circ}C$ (*3*)

количеств модифицирующих частиц TiB₂ в формировании структуры полимерного композита СВМПЭ + + ТіВ₂ в режиме ТФЭ. Термомеханический анализ полимерной системы СВМПЭ + ТіВ₂, полученной ТФЭ, показал, что данная технология приводит к существенному нарушению изотропного топологического строения композита и переходу к резкой анизотропии материала, прошедшего обработку давлением в твердой фазе. Термомеханический анализ композита

СВМПЭ + 1 mass fr. TiB₂ после ТФЭ при скорости 100 mm/min свидетельствует, что в этом случае формируется структура полимера с тремя кристаллическими модификациями в качестве узлов разветвления.

При оценке физико-механических показателей в условиях напряжений среза образцов СВМПЭ-композитов после ТФЭ по сравнению с образцами, полученными ЖФТ, обнаружено повышение (в 1.5–2 раза) прочностных характеристик материала в направлении, перпендикулярном ориентации в режиме ТФЭ, которое связано с изменением молекулярно-топологической структуры и структурных характеристик СВМПЭ после обработки в твердой фазе (рис. 2).

Разброс значений напряжений среза на рис. 2 составляет не более 5%.

Важным технологическим параметром, наряду со скоростью приложения нагрузки, является температура переработки материала в твердой фазе, в случае ТФЭ – $T_{\text{extr.}}$ В работе [7] оптимальная температура переработки в твердой фазе полимеров находится из соотношения Бойера [8]:

– для аморфно-кристаллических полимеров

$$T_{\text{extr}} = (0.75 \pm 0.15)T_{\text{melt}};$$

– для стеклообразных полимеров

$$T_{\rm extr} = (0.75 \pm 0.15)T_{\rm gl}$$

Из полученных экспериментальных данных следует, что наибольшее повышение прочности в условиях среза наблюдается после ТФЭ при оптимальной $T_{\text{extr}} = 90^{\circ}$ С по сравнению с ТФЭ при $T_{\text{extr}} = 22^{\circ}$ С. Полученные экспериментальные результаты свидетельствуют о том, что процессы трансформации структуры и ориентационной кристаллизации СВМПЭ при ТФЭ протекают наиболее эффективно и на большую глубину при $T_{\text{extr}} = 90$ С.

При сравнении концентрационных зависимостей степени кристалличности и прочностных характеристик в условиях напряжений среза полимерных систем СВМПЭ + TiC и СВМПЭ + TiB₂ отмечены экстремумы.

Рис. 3. Концентрационные зависимости пределов прочности и текучести в условиях одноосного растяжения для образцов системы СВМПЭ + TiB₂, полученных горячим прессованием: $1 - \sigma_t$, $2 - \sigma_r$

Рис. 4. Концентрационные зависимости микротвердости полимерной системы $CBM\Pi \Im + TiB_2$ при времени нагружения 10 (1), 30 (2) и 60 (3) s, нагрузка 10 g

Аналогичные зависимости найдены при определении пределов прочности и текучести в условиях одноосного растяжения и величин микротвердости для полимерных систем, полученных $\mathcal{W}\Phi T$. Отмечено существенное влияние малых добавок TiC и TiB₂ на физико-механические свойства композитов (рис. 3, 4). Разброс значений величин микротвердости, пределов прочности и текучести в условиях одноосного растяжения на этих рисунках составляет не более 5%.

Рентгеноструктурный анализ образцов полимерной системы на основе СВМПЭ с различным содержанием TiB_2 и TiC показал, что введение небольшого количества добавок отражается в основном на параметрах аморфной фазы полимерной системы и в меньшей степени – на кристаллической фазе полимерного композита, полученного $\mathcal{K}\Phi T$ (рис. 5 и 6). Как свидетельствует угловое положение аморфного гало, уже небольшое содержание добавок TiC и TiB_2 увеличивает среднее межмолекулярное расстояние в некристаллической фазе на 0.02 nm, что на порядок выше соответствующих изменений в кристаллической фазе. При этом полуширина диффузного максимума также реагирует на вводимые добавки TiC и TiB_2 . Увеличивается

Рис. 5. Концентрационные зависимости степени кристалличности для системы СВМПЭ + ТіС

полуширина аморфного гало при малом (до 2%) содержании ТіС и ТіВ₂, что говорит о большем возрастании неоднородности аморфной фазы. Степень упорядоченности аморфной компоненты полимерной системы уменьшается ввиду непосредственного влияния вводимых добавок модификатора.

Анализ показал, что при увеличении содержания вводимых добавок TiB₂ и TiC происходит экстремальное

Рис. 6. Зависимости интенсивности (а), углового положения (б), полуширины (в) аморфного гало от содержания ТіС для системы СВМПЭ + ТіС

Рис. 7. Диаграммы изменения степени кристалличности композита СВМПЭ + + 1 mfss fr. TiB₂, полученного ЖФТ (1) и ТФЭ при скорости приложения нагрузки 5 mm/min (2) и 50 mm/min (3). Степень деформирования $\lambda_{extr} = 2.7$, $T_{\rm extr} = 22^{\circ}{\rm C}$

изменение степени кристалличности композитов, причем влияние добавок ощущается, уже начиная с 0.5 mass fr. (см. рис. 5). Рентгеноструктурный анализ системы СВМПЭ + 1 mass fr. TiB₂, прошедшей ТФЭ, свидетельствует об увеличении степени кристалличности на 20% в зависимости от скорости приложения нагрузки по сравнению с ЖФТ (рис. 7).

Выводы

1. Методом ТМС проведено сравнительное исследование молекулярнотопологического строения СВМПЭ-композита после ЖФТ и ТФЭ с различной скоростью приложения нагрузки на материал в режиме капиллярной твердофазной экструзии. В обоих способах переработки в материале обнаружена топологически трехблочная аморфно-кристаллическая структура псевдосетчатого строения. В каждом блоке определены их молекулярнорелаксационные и структурные характеристики.

2. В процессе ТФЭ обеспечивается анизотропная структура полимера в сравнении с ЖФТ, в результате которой формируется изотропная структура. Установлено, что в исследуемой полимерной системе в результате ТФЭ при 5 и 100 mm/min высокое давление инициирует дробление кристаллической фазы на модификации с меньшей степенью кристалличности и величиной весовой доли, а также массоперенос цепей из одного топологического блока в другой при изменении температуры плавления и плотности упаковки цепей в отдельных блоках.

3. С позиций методов ТМС и рентгеноструктурного анализа объясняются структурно-механические свойства СВМПЭ-композита после ЖФТ и ТФЭ. Существенное влияние малых добавок ТіС и ТіВ₂ на показатели прочности и микротвердости материала связано как с экстремальным изменением степени кристалличности полимерной системы, так и со структурными изменениями аморфной фазы полимерного композита.

Работа выполнена при финансовой поддержке Федерального агентства по образованию РФ в рамках аналитической ведомственной целевой программы «Развитие научного потенциала высшей школы» 2006–2010 гг. (коды проекта: РНП 2.2.1.1.5355; РНП 2.2.1.1.5207) и Американского фонда гражданских исследований и развития (CRDF) на 2007–2010 гг. (НОЦ-019 «Твердофазные технологии»).

- 1. Г.С. Баронин, М.Л. Кербер, Е.В. Минкин, Ю.М. Радько, Переработка полимеров в твердой фазе. Физико-химические основы, Машиностроение, Москва (2002).
- 2. К.В. Шапкин, Дисс. ... канд. техн. наук, Тамбов (2008).
- 3. Т.Ф. Иржак, С.Е. Варюхин. Ю.А. Ольхов, СМ. Батурин, В.И. Иржак, Высокомолекулярные соединения **А39**, 671 (1997).
- 4. Ю.А. Ольхов, С.М. Батурин, В.И. Иржак, Высокомолекулярные соединения **А38**, 849 (1996).
- 5. Дж. Ферри, Вязкоупругие свойства полимеров, Изд-во иностр. лит., Москва (1963).
- 6. M.Z. Williams, R.F. Landel, J.D. Ferry, J. Chem. Phys. 77, 3701 (1962).
- 7. Г.С. Баронин, М.Л. Кербер, Е.В. Минкин, П.С. Беляев, Переработка полимеров в твердой фазе: Учебное пособие, Тамб. гос. техн. ун-т, Тамбов (2005).
- 8. Переходы и релаксационные явления в полимерах, А.Я. Малкина (ред.), Мир, Москва (1968).

Г.С. Баронін, О.М. Столін, Д.В. Пугачов, Д.О. Завражин, Д.Є. Кобзев, Ю.О. Козлукова, О.К. Разінін

МОЛЕКУЛЯРНО-РЕЛАКСАЦІЙНІ І СТРУКТУРНО-МЕХАНІЧНІ ХАРАКТЕРИСТИКИ КОМПОЗИТІВ НА ОСНОВІ НАДВИСОКОМОЛЕКУЛЯРНОГО ПОЛІЕТИЛЕНУ, ОТРИМАНИХ РІДКО- І ТВЕРДОФАЗНОЮ ЕКСТРУЗІЄЮ

На основі порівняльного вивчення молекулярно-релаксаційних, структурних і фізико-механічних характеристик композитів на основі надвисокомолекулярного

поліетилену (НВМПЕ), отриманих рідкофазною (РФЕ) і твердофазною (ТФЕ) екструзією, виявлено закономірності формування молекулярно-топологічної будови і властивостей аморфно-кристалічного полімеру псевдосітчастої будови в результаті переробки в твердій фазі. Експериментальні результати пояснено з позицій наукових уявлень, отриманих в результаті аналізу даних термомеханічної спектроскопії, рентгеноструктурного аналізу та інших методів вивчення технологічного процесу ТФЕ НВМПЕ-композитів.

G.S. Baronin, A.M. Stolin, D.V. Pugachev, D.O. Zavrazhin, D.E. Kobzev, Yu.O. Kozlukova, A.K. Razinin

MOLECULAR-RELAXATION AND STRUCTURE-MECHANICAL CHARACTERISTICS OF COMPOSITES BASED ON ULTRAHIGH-MOLECULAR WEIGHT POLYETHYLENE PRODUCED BY LIQUID-AND SOLID-PHASE EXTRUSION

On the basis of comparative analysis of molecular-relaxation, structural and physicalmechanical properties of polymer composites based on ultrahigh-molecular weight polyethylene (UHMWPE), produced by liquid-phase (LPE) and solid-phase (SPE) extrusion, the common regularities of formation of molecular-topological structure and properties of an amorphous-crystalline polymer of pseudo-mesh structure as a result of its processing in solid phase have been revealed. The obtained experimental results are explained in view of thermomechanical spectroscopy (TMS), X-ray analysis and other methods of UHMWPE SPE technological process.

Fig. 1. Thermomechanical curve for the system SPE + mass fr. of TiB₂ produced by hot pressing at T = 220°C. The direction of testing is perpendicular (\perp) to the direction of molding

Fig. 2. Concentration dependences of hardness for a cut τ_{cut} of the system of UHMWPE + + TiC, produced by hot pressing (1) and SPE at $\lambda_{extr} = 2.07$, $T_{extr} = 22^{\circ}C$ (2) and $T_{extr} = 90^{\circ}C$ (3)

Fig. 3. Concentration dependences of ultimate and yield strengths under uniaxial tension for polymeric system of UHMWPE + TiB₂, produced by hot pressing: $1 - \sigma_t$, $2 - \sigma_r$

Fig. 4. Concentration dependences of microhardness for polymeric system UHMWPE + + TiB₂ for loading time of 10 (1), 30 (2) and 60 (3) s, 10 g-load

Fig. 5. Concentration dependences of degree of crystallinity for the UHMWPE + TiC system

Fig. 6. Dependence of intensity (*a*), angular location (δ), half-width (*b*) of amorphous halo on the TiC content for UHMWPE + TiC system

Fig. 7. Diagrams of changes in crystallinity degree for the composite UHMWPE + 1 mass fr. of TiB₂ produced by LPE (1) and SPE (2) at a rate of the loading 5 mm/min (2) and 50 mm/min (3). The degree of deformation $\lambda_{extr} = 2.7$, $T_{extr} = 22^{\circ}C$