PACS: 62.20.Fe, 62.20.-x

Д.В. Гундеров, А.В. Лукьянов, Е.А. Прокофьев

ФОРМИРОВАНИЕ СТРУКТУРЫ И СВОЙСТВ СПЛАВА ТINI ПРИ ВОЗДЕЙСТВИИ ТЕПЛОЙ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ

Уфимский государственный авиационный технический университет ул. К. Маркса, 12, г. Уфа, 450000, Россия E-mail: dimagun@mail.ru

Исследованы микроструктура и свойства образцов $Ti_{49.4}Ni_{50.6}$ диаметром 20 mm, подвергнутых интенсивной пластической деформации кручением (ИПДК) при температурах 20, 300 и 400 °C. В результате ИПДК с числом оборотов n = 5 при 20 °C в образцах формируется аморфно-нанокристаллическая структура, ИПДК при 300 и 400 °C приводит к формированию нанокристаллической (НК) структуры с размером зерен d_g около 80 и 100 пт соответственно. Прочность образцов после ИПДК при 20 и 300 °C достигает 2000 и 1800 МРа соответственно.

Сплавы Ті–Nі широко используются в технике и медицине как материалы с эффектом памяти формы (ЭПФ) [1]. Новые возможности в регулировании физико-механических свойств металлов и сплавов открывает создание в них НК-состояния методами интенсивной пластической деформации (ИПД) [2]. Известным методом последней является ИПДК, которая позволяет достигать наиболее высоких степеней деформации и наиболее сильно измельчать структуру материалов [2]. При воздействии ИПДК сплавы TiNi аморфизируются, а их последующими отжигами можно сформировать НК-структуры [3-5]. Однако использованные в работах [3-5] традиционные режимы ИПДК позволяли получать лишь малые дисковые образцы диаметром 5-10 mm и толщиной около 0.1-0.15 mm, что затрудняло исследование их механических свойств и ЭПФ. В работе [6] сплав TiNi подвергнут ИПДК при комнатной температуре с использованием более мощной установки «СКРУДЖ-200» и специальной методики, что позволило получить образцы относительно большого размера – \emptyset 20 mm и толщиной до 1 mm [18]. В данной работе к сплавам Ti-Ni впервые применена новая установка и методика ИПДК «в канавке» при температурах 300 и 400°С.

Исходным материалом служил сплав $Ti_{49.4}Ni_{50.6}$ (поставка Intrinsic Devices Inc., США) с температурой мартенситного превращения M_s 15°С. После гомогенизации и закалки от 800°С сплав был подвергнут ИПДК на установке «СКРУДЖ-200» в бойках с канавкой диаметром 20 mm под давлением P = 6 GPa при температуре бойков 20, 300 и 400°С.

В результате ИПДК с числом оборотов n = 5 при 20°С (ИПДК 20°С) в образцах формируется аморфно-нанокристаллическая структура (рис. 1,*a*). Средний размер сохранившихся зерен по темнопольному изображению d_g в краевой части образца-диска составил около 30 nm.

Рис. 1. ПЭМ-изображения микроструктур сплава Ті_{49.4}Ni_{50.6} после ИПДК: *a* – 20°С, *б* – 300°С, *в* – 400°С (край образца)

Вследствие ИПДК при температуре 300°С (ИПДК 300°С) в краевой части образца формируется НК-структура с $d_g \approx 80$ nm (рис. 1, δ). Границы зерен искривлены. Зерна имеют вытянутый характер, содержат высокую плотность дислокаций. Аморфная фаза в структуре отсутствует, поскольку интенсификация релаксационных процессов при повышении температуры деформации подавляет аморфизацию. В результате ИПДК при температуре 400°С (ИПДК 400°С) в краевой части образца формируется структура с $d_g \approx 100$ nm (рис. 1, \mathfrak{s}). Распределение зерен по размеру близко к распределению Гаусса. Хотя некоторые зерна имеют размер более 200 nm, их доля незначительна. Отметим, что достигнутый при ИПДК 400°С средний размер зерна

100 nm заметно меньше, чем достигаемый при РКУП при аналогичной температуре деформации (≈ 300 nm) [3]. В целом зеренная структура после ИПДК 400°С является более выраженной, границы зерен – более четкими, а вытянутость зерен - заметно меньше, чем в случае ИПДК 300°С. Микроструктуру образцов ИПДК 300°С и ИПДК 400°С интересно сравнить с микроструктурой, сформированной статическим отжигом при тех же температурах аморфизированных образцов ИПДК 20°С. По данным ПЭМ, часовой отжиг при температуре 300°С образца ИПДК 20°С не приводит к полной кристаллизации аморфной фазы, размер зерна остается около 30 nm. Отжиг при 400°С в течение 20 min приводит к кристаллизации аморфной фазы и к формированию НК-структуры со средним размером зерен В2-фазы около 20 nm. Оценка по темному и светлому полю свидетельствует о том, что такой отжиг приводит даже к небольшому уменьшению среднего размера зерен по сравнению с состоянием непосредственно после ИПДК 20°С. Вероятно, это связано с появлением новых мелких зерен размером менее 10 nm в результате кристаллизации аморфа. Отметим, что размер зерна аморфизированных образцов ИПДК 20°С после статического отжига 400°С 20 min в пять раз меньше, чем d_g после ИПДК 400°С.

Механические испытания на растяжение показали (рис. 2), что формирование аморфизированной микроструктуры в результате ИПДК 20°С приводит к увеличению предела прочности $\sigma_{\rm B}$ и предела текучести $\sigma_{\rm T}$ более 2000 MPa (с исходных 1050 и 560 MPa соответственно) при пластичности 10% (при исходной $\delta = 80\%$). На кривой течения образца ИПДК 20°С отсутствует площадка фазовой псевдотекучести. После отжига данного состояния при 400°С в течение 20 min и формирования НК-структуры с $d_g = 30$ nm общая

Рис. 2. Кривые напряжение–деформация при растяжении сплава Ti_{49.4}Ni_{50.6}, подвергнутого ИПДК с числом оборотов n = 5, 6 GPa в канавке: 1 – при комнатной температуре, 2 – при температуре 300°C, 3 – при 400°C, 4 – ИПДК 20°C и отжиг 400°C, 20 min, 5 – ИПДК 400°C и отжиг 400°C, 20 min

пластичность повысилась до 16% при прочности около 2000 МРа (рис. 2, кривая 4), а на кривой течения появилась фазовой площадка псевдотекучести (рис. 2, кривая 4). Предел прочности образцов ИПДК 300°С достигает 1800 МРа, σ_т - 1660 МРа при пластичности 15% (рис. 2, кривая 2). У образца ИПДК 400°С $\sigma_{\rm B}$ и $\sigma_{\rm T}$ составляют 1400 и 1200 MPa (рис. 2, кривая 3), а на кривой растяжения наблюдается выраженная площадка фазовой псевдотекучести при напряжении $\sigma_m \approx 200$ MPa. Общая пластичность составила 20%. Таким образом, прочность образцов ИПДК 300°С заметно выше, чем σ_в образцов ИПДК 400°С (1400 MPa), хотя по первым оценкам dg данных состояний близки (80 и 100 nm соответственно). По-видимому, заметная разница в прочности и пределе текучести этих состояний может объясняться большей плотностью дислокаций в зернах и их границах в состоянии ИПДК 300°С.

- 1. В.Н. Журавлев, В.Г. Пушин, Сплавы с термомеханической памятью и их применение в медицине, УрО РАН, Екатеринбург (2000).
- 2. *Р.З. Валиев, И.В. Александров*, Наноструктурные материалы, полученные интенсивной пластической деформацией, Логос, Москва (2000).
- 3. Е.В. Татьянин, Н.Ф. Боровиков, В.Г. Курдюмов, В.Л. Инденбом, ФТТ **39**, № 7 (1997).
- 4. V.G. Pushin, V.V. Stolyarov, R.Z. Valiev, N.I. Kourov, N.N. Kuranova, E.A. Prokofiev, L.I. Yurchenko, Phys. Met. Metallography **94**, S54 (2002).
- 5. S.D. Prokoshkin, I.Yu. Khmelevskaya, S.V. Dobatkin, I.B. Trubitsyna, E.V. Tatyanin, V.V. Stolyarov, E.A. Prokofiev, Acta Materialia 53, 2703 (2005).
- 6. А.В. Лукьянов, Д.В. Гундеров, Е.А. Прокофьев, В.Г. Пушин, А.Н. Уксусников, Сборник материалов III Международной школы «Физическое материаловедение», «Наноматериалы технического и медицинского назначения», Тольятти (2007).

D.V. Gunderov, A.V. Lukyanov, E.A. Prokofiev

FORMATION OF TINI STRUCTURE AND PROPERTIES BY WARM HIGH-PRESSURE TORSION

Microstructure and properties of Ti_{49,4}Ni_{50.6} samples Ø 20 mm subjected to high pressure torsion (HPT) at temperature 20, 300 and 400°C have been investigated. Amorphous nanocrystalline structure is formed in the samples as a result of HPT with rotation number n = 5 at 20°C. HPT at 300 and 400°C leads to nanocrystalline (NC) structure formation with a grain size d_g of about 80 and 100 nm, correspondingly. Strength of the samples after HPT at 20 and 300°C achieves 2000 and 1800 MPa, correspondingly.

Fig. 1. TEM patterns of the microstructure of Ti_{49.4}Ni_{50.6} alloy after HPT: $a - 20^{\circ}$ C, $\delta - 300^{\circ}$ C, $e - 400^{\circ}$ C (the edge of the sample)

Fig. 2. Stress-strain curves of the $Ti_{49.4}Ni_{50.6}$ alloy subjected to HPT (n = 5 rotations, 6 GPa in the groove) during tensile tests: l - at room temperature, $2 - at 300^{\circ}C$, $3 - at 400^{\circ}C$, 4 - HPT at 20°C and annealing at 400°C, 20 min, 5 - HPT at 400°C and annealing at 400°C, 20 min