PACS: 64.90.-i, 81.40.Vw, 82.80.Ch

Г.В. Букин¹, С.А. Терехов¹, А.В. Gaspar², Ј.А. Real², Г.Г. Левченко¹

ПЕРЕХОД ВЫСОКИЙ СПИН–НИЗКИЙ СПИН В МЕТАЛЛООРГАНИЧЕСКИХ СТРУКТУРАХ 2*D*-ГОФМАНОВСКОГО ТИПА Fe(3-Fpy)₂M(CN)₄ ПОД ДАВЛЕНИЕМ

¹Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: levch@levch.fti.ac.donetsk.ua

²Institut de Ciencia Molekular/Departement de Quimica Inorganica Universitat de Valencia Valencia, Spain E-mail: jose.a.real@uv.es

Статья поступила в редакцию 18 ноября 2009 года

Методом анализа поглощения видимого света исследованы индуцированные внешним гидростатическим давлением при комнатной температуре переходы высокий спин-низкий спин (HL-переходы) ионов двухвалентного железа в высокомолекулярных 2D-соединениях с общей формулой Fe(3-Fpy)₂[M^{II}(CN)₄] (3-Fpy – галогенные производные пиридина, M^{II} – допирующие металлы Ni, Pt). Установлено, что с увеличением радиуса иона допирующего металла растет давление перехода. Проведен сравнительный анализ параметра взаимодействия высоко- и низкоспиновых комплексов, определенного из экспериментов по изучению HL-переходов, температурно-индуцированных под давлением и индуцированных давлением при постоянной температуре. Анализ указывает на одинаковый тип взаимодействия спинактивных комплексов при HL-переходах, индуцируемых различными способами.

Ключевые слова: магнитные материалы, высокие давления, фазовый переход, спиновый переход, комплексные соединения

Введение

В последнее время широко исследуются металлоорганические координационные соединения с переходом между высоко- и низкоспиновым состояниями, являющимися стабильными при определенных физических условиях. Это связано с перспективой их применения в устройствах записи и хранения информации на молекулярном уровне. В соединениях с ионами переходных металлов изменение электронных уровней при спиновом переходе (СП) приводит к изменению цвета комплекса. Данный эффект позволяет проводить исследования переходов методами абсорбционной спектроскопии [1,2]. Изучение свойств координационных соединений с HL-переходом расширяет представления о фазовых превращениях. Возникает необходимость количественного определения изменения энтальпии, энтропии, упругой энергии, энергии взаимодействия комплексных молекул между собой и с кристаллической решеткой. Это становится возможным при использовании таких внешних воздействий, как давление P и температура T. Гидростатическое давление позволяет изменять внутри- и межмолекулярные расстояния, меняя тем самым величину и симметрию кристаллического поля, и выяснять их роль и участие при СП. От температуры зависит заселенность электронных уровней центрального иона и его спиновое состояние.

В литературе имеется широкий спектр исследований, представляющих собой изучение совместного влияния на СП давления и температуры. Они проводились путем изучения влияния давления на температурно-индуцированный HL-переход [3–12]. Дополнительную и важную информацию можно получить из индуцированных давлением HL-переходов при постоянной (комнатной) температуре. Но кроме исследований в работе [5] и выполненных Дрикамером [13-15] в 80-х гг. прошлого века, в которых не были получены завершенные индуцированные давлением HL-переходы, других публикаций не было. Это объяснялось отсутствием удобного метода измерения. После использования для этих целей оптического метода регистрации перехода [16] в широком диапазоне давлений появились работы по индуцированию давлением HLпереходов с гистерезисом [17,18]. При этом впервые появилась возможность сопоставить энергию взаимодействия комплексных молекул с шириной перехода под давлением. Для более ясного понимания влияния давления и температуры на HL-переход необходимо провести измерения на определенном классе соединений, имеющих общие характеристики.

Цель работы – экспериментальное исследование влияния давления на спиновое состояние ионов Fe^{2+} в 2*D*-координационных полимерах с общей формулой [Fe(3-Fpy)₂M(CN)₄] (где 3-Fpy – фторпроизводная пиридина; M = Ni, Pt) и проведение сравнительного анализа параметра взаимодействия высоко- и низкоспиновых комплексов между собой, полученного из экспериментов по изучению HL-переходов, температурно-индуцированных под давлением и индуцированных давлением при постоянной (комнатной) температуре.

Эксперимент

Исследуемые образцы в виде тонкого слоя микрокристаллов помещали в твердотельную оптическую камеру высокого давления [19]. Измерения проводили при температуре T = 297 К. Давление увеличивали дискретно от атмосферного до 0.931 GPa. Спектры поглощения образцов регистрировали при фиксированном внешнем давлении с помощью спектрографа PGS-2 производства Carl Zeiss и документировали при помощи персонального компьютера.

На рис. 1, 2 приведены спектры поглощения соединений при дискретном повышении (a) и понижении (b) давления. Из рисунков видно подобие спектров

Рис. 1. Спектры поглощения Fe(3-Fpy)₂Ni(CN)₄ при дискретном повышении (*a*) и понижении (*б*) давления, GPa: *a*: $\Box - 10^{-4}$, $\circ - 0.247$, $\triangle - 0.333$, $\nabla - 0.427$, $\Diamond - 0.488$, $\lhd - 0.614$, $\triangleright - 0.775$, ☆ - 0.931; *б*: $\Box - 10^{-4}$, $\circ - 0.123$, $\triangle - 0.225$, $\nabla - 0.304$, $\diamond - 0.393$, $\lhd - 0.505$, $\triangleright - 0.727$, ☆ - 0.931. На вставке изображен спектр пропускания соединения при давлении 0.931 GPa во всей области спектральной чувствительности экспериментальной установки от 330 до 840 nm

Рис. 2. Спектры поглощения Fe(3-Fpy)₂Pt(CN)₄ при дискретном повышении (*a*) и понижении (*б*) давления, GPa: *a*: $\Box - 10^{-4}$, $\circ - 0.130$, $\triangle - 0.242$, $\nabla - 0.353$, $\diamondsuit - 0.477$, $\lhd -0.719$, $\triangleright -0.878$; *б*: $\Box - 10^{-4}$, $\circ -0.177$, $\triangle -0.261$, $\nabla -0.302$, $\diamondsuit -0.366$, $\lhd -0.700$, $\triangleright -0.878$

поглощения соединений, что говорит о близости их электронных структур. Изменение оптической плотности от величины приложенного давления соответствует динамике протекания HL-переходов ионов Fe^{2+} в исследуемых комплексах.

Анализ спектров поглощения этих соединений при увеличении и уменьшении давления позволяет сделать вывод об обратимости HL-переходов, индуцированных давлением при комнатной температуре.

При повышении давления соединения демонстрируют прямые переходы из высоко- в низкоспиновое состояние, а при сбросе давления наблюдаются обратные переходы из низко- в высокоспиновое состояние. Давления переходов $P_{1/2}$ при увеличении $(P_{1/2}^{\uparrow})$ и уменьшении $(P_{1/2}^{\downarrow})$ давления определяли при равновес-

ной концентрации низко- (γ_{LS}) и высокоспиновой (γ_{HS}) фаз, т.е. $\gamma_{HS} = \gamma_{LS} = 1/2$. СП происходят достаточно резко с гистерезисом шириной $\Delta P_{1/2} = P_{1/2}^{\uparrow} - P_{1/2}^{\downarrow}$ при давлениях $P_{1/2} = \frac{P_{1/2}^{\uparrow} + P_{1/2}^{\downarrow}}{2}$.

Исследование зависимости количества низкоспиновой фазы от давления проводили на полосе поглощения, связанной с разрешенным по спину *d*-*d*переходом ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ ионов Fe²⁺ в низкоспиновом состоянии [20] в области длин волн, где изменение оптической плотности пропорционально у_{LS}. Как известно [1,17,18], при переходе ионов Fe^{2+} в низкоспиновое состояние вместе с полосой поглощения перехода ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ возникает полоса поглощения, связанная с разрешенным по спину d-d-переходом ${}^{1}A_{1} \rightarrow {}^{1}T_{2}$. На вставке рис. 1,а отчетливо видно, что в исследуемых соединениях полоса поглощения перехода ${}^{1}A_{1} \rightarrow {}^{1}T_{2}$ с максимумом около 400 nm имеет большую интенсивность, по сравнению с интенсивностью полосы поглощения перехода ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ с максимумом около 530 nm. В область максимальной спектральной чувствительности экспериментальной установки (400-750 nm) менее интенсивная полоса поглощения попадает полностью, а более интенсивная – находится на границе этой области, где измерения оптической плотности имеют большую погрешность и обычно не используются. В этом случае наиболее точно рассчитать долю низкоспиновой фазы в соединениях при фиксированном давлении можно по интегральным значениям оптических плотностей в области максимальной спектральной чувствительности, где присутствуют обе полосы поглощения. Полученные таким образом зависимости доли низкоспиновой фазы от давления приведены на рис. 3.

Параметры индуцированных давлением переходов при постоянной температуре и атомные радиусы R_a допирующих металлов сведены в табл. 1. Из таблицы видно, что с увеличением атомного радиуса допирующего металла давление перехода уменьшается. Это соответствует росту положительного

Рис. 3. Зависимости доли высокоспиновой фазы от давления соединений: $a - Fe(3-Fpy)_2Ni(CN)_4$, $\delta - Fe(3-Fpy)_2Pt(CN)_4$. Для наглядности переходов сплошные линии проведены от руки

«внутреннего» давления в комплексе с увеличением атомного радиуса допирующего металла. Наличие пьезогистерезисов с шириной порядка 0.1 GPa говорит о сильных кооперативных взаимодействиях, являющихся следствием сильных координационных связей.

Таблица 1

Параметры индуцированных давлением переходов при постоянной температуре и атомные радиусы допирующих металлов

	DÅ	$P_{1/2}^{\uparrow}$	$P_{1/2}^{\downarrow}$	$P_{1/2}$	$\Delta P_{1/2}$
Соединение	Λ_a, A	GPa			
Fe(3-Fpy) ₂ Ni(CN) ₄	1.62	0.3839	0.2865	0.3352	0.0974
$Fe(3F-py)_2Pt(CN)_4$	1.83	0.3414	0.2717	0.3041	0.0697

Температурные зависимости молярной магнитной восприимчивости при различных фиксированных внешних давлениях были получены на микрокристаллических образцах в области температур от 5 до 300 К в магнитном поле напряженностью 1 Т. При нагревании соединения имеют завершенные прямые переходы из высоко- в низкоспиновое состояние, а при охлаждении – завершенные обратные переходы из низко- в высокоспиновое состояние [22].

Параметры температурно-индуцированных переходов под давлением для исследуемых соединений представлены в табл. 2. Из таблицы видно, что с увеличением приложенного давления растет температура перехода. Для обоих соединений температура и давление переходов, индуцированных давлением при комнатной температуре, и температурно-индуцированных переходов под давлением совпадают.

Таблица 2

Параметры	Fe(3-Fpy) ₂ Ni(CN) ₄			Fe(3-Fpy) ₂ Pt(CN) ₄			
P, GPa	10 ⁻⁴	0.25	0.30	0.50	10 ⁻⁴	0.16	0.30
$T_{1/2}^{\downarrow}$, K	206.46	217.71	277.61	323.5	213.42	213.65	322.66
$T_{1/2}^{\uparrow}, \mathrm{K}$	232.95	251.16	304.56	-	237.21	249.17	343.25
$\Delta T_{1/2}$, K	26.49	33.45	26.95	_	23.79	35.52	20.59
<i>T</i> _{1/2} , K	219.71	234.44	291.09	_	225.32	231.41	332.96

Параметры температурно-индуцированных переходов под давлением

Обсуждение

Впервые термодинамика индуцированного давлением СП при постоянной температуре была рассмотрена в [23], где свободная энергия Гиббса имеет вид

$$G = H - TS + PV, \tag{1}$$

где *H* – энтальпия, *T* – температура, *S* – энтропия, *P* – давление, *V* – объем.

В случае систем, содержащих низко- и высокоспиновые комплексы, влияние давления и температуры на HL-переход описывается с использованием уравнения для потенциала Гиббса в виде [24,25]:

$$G(\gamma_{HS}, T, P) = (1 - \gamma_{HS})G_{LS}(P, T) + \gamma_{HS}G_{HS}(P, T) + P\Delta V_{HL} + G_{\text{int}} - TS_{\text{mix}},$$
(2)

где G_{LS} , G_{HS} – потенциалы Гиббса низко- и высокоспиновых фаз системы с невзаимодействующими комплексами; γ_{HS} – приведенная доля высокоспиновых комплексов в системе; ΔV_{HL} – изменение объема при HL-переходе; S_{mix} – энтропия перемешивания, $S_{\text{mix}} = -k_B[\gamma_{HS} \ln(\gamma_{HS}) + (1 - \gamma_{HS}) \ln(1 - \gamma_{HS})]$; G_{int} – энергия взаимодействия спин-активных комплексов.

С изменением давления скорость изменения температуры перехода при атмосферном давлении имеет линейный характер и, например, в работах [12,26] описывается выражением Клаузиуса–Клапейрона, которое характеризует фазовые переходы I рода:

$$dT_{1/2}/dP = \Delta V_{HL}/\Delta S .$$
(3)

В экспериментах по изучению температурно-индуцированных переходов наблюдается изменение температуры перехода при изменении внешнего давления, однако скорость ее изменения имеет явно нелинейный характер (см. табл. 2).

При индуцировании температурой HL-перехода под давлением с ее изменением происходит изменение энтропии и энтальпии системы. Изменение внешнего давления приводит к изменению энергии взаимодействия комплексов, которая зависит и от температуры. Для учета этих изменений энергия взаимодействия комплексов в системе, входящая в уравнение для потенциала Гиббса (2), представлена выражением [24]:

$$G_{\rm int} = \Delta_{\rm elast} \gamma_{HS} - \Gamma(\gamma_{HS})^2, \qquad (4)$$

где Г – параметр взаимодействия высоко- и низкоспиновых комплексов между собой; Δ_{elast} – энергия упругого взаимодействия комплексов из-за деформации кристаллической решетки.

Тогда из уравнения для потенциала Гиббса (2) скорость изменения температуры перехода при изменении давления будет иметь вид [27]:

$$dT_{1/2}/dP = \left(\Delta V_{HL} + d(\Delta_{elast} - \Gamma)/dP\right)/\Delta S.$$
(5)

Для анализа энергии взаимодействия (4) необходимо из экспериментальных данных температурно-индуцированных переходов под давлением определить Δ_{elast} и Г.

Приравняв к нулю производную потенциала Гиббса (2) по параметру порядка, которым является доля высокоспиновой фазы ($\partial G(\gamma_{HS}, T, P)/\partial \gamma_{HS} = 0$), получим уравнение равновесия двух спиновых состояний:

$$\Delta H_{HL}(T) - T\Delta S_{HL} + P\Delta V_{HL} + \Delta_{\text{elast}} - 2\gamma_{HS}\Gamma - k_BT\ln\left(\frac{1 - \gamma_{HS}}{\gamma_{HS}}\right) = 0.$$
(6)

Из уравнения равновесия (6) связь между температурой и долей высокоспиновой фазы будет

$$T(\gamma_{HS}) = \frac{\Delta H_{HL}(T) + \Delta_{\text{elast}} + P\Delta V_{HL} - 2\gamma_{HS}\Gamma}{k_B \ln\left(\frac{1 - \gamma_{HS}}{\gamma_{HS}}\right) + \Delta S_{HL}}.$$
(7)

Тогда интересующие нас параметры Δ_{elast} и Г можно получить подгонкой уравнения (7) к экспериментальной кривой $\gamma_{HS}(T)$ (табл. 3).

Таблица 3

Параметры ∆_{elast} и Г температурно-индуцированных HL-переходов под давлением

Соелицение	P GPa	Δ_{elast}	Г		
Соединение	<i>I</i> , 01 a	I	K		
Fe(3-Fpy) ₂ Pt(CN) ₄	10 ⁻⁴	25.26	734.89		
	0.16	-318.98	851.33		
	0.30	417.73	953.92		
Fe(3-Fpy) ₂ Ni(CN) ₄	10^{-4}	31.99	736.22		
	0.25	-464.27	827.75		
	0.30	-7.697	907.02		

Экспериментальные значения скорости изменения температуры перехода при изменении давления $(dT_{1/2}/dP)_{exp}$ и найденные из выражения Клаузиуса–Клапейрона (3), а также рассчитанные с использованием полученных Δ_{elast} и Г по выражению (5) для сравнения приведены в табл. 4. Из таблицы видно, что скорость изменения температуры перехода при изменении величины приложенного давления качественно отображается выражением (5) с использованием Δ_{elast} и Г, определенных из экспериментальных данных температурно-индуцированных HL-переходов под давлением. Таким образом, для данной серии соединений использование выражения (5) лучше согласуется с экспериментальными данными температурноиндуцированных HL-переходов под давлением, чем использование выражения Клаузиуса–Клапейрона (3).

Таблица 4

 $\Delta V / \Delta S$ $(\Delta V + d(\Delta_{elast} - \Gamma)/dP)/\Delta S$ ΔP , $(dT_{1/2}/dP)_{exp}$ Соединение $10^{-8} \cdot (K/Pa)$ GPa 0.16 3.80625 0.23868 -2.23561 Fe(3-Fpy)₂Pt(CN)₄ 0.30 35.88000 0.23868 29.11026 0.25 5.89200 0.25011 37.97754 Fe(3-Fpy)₂Ni(CN)₄ 0.30 23.79333 0.25011 18.33757

Результаты расчета скорости изменения температуры перехода при изменении давления

Для HL-переходов, индуцированных давлением при постоянной температуре, уравнение равновесия двух спиновых состояний имеет вид

$$\Delta H_{HL}(P) - T\Delta S_{HL} + P\Delta V_{HL} - 2\gamma_{HS}\Gamma - k_BT \ln\left(\frac{1 - \gamma_{HS}}{\gamma_{HS}}\right) = 0, \qquad (8)$$

где $\Delta H(P)$ – изменение энтальпии при изменении давления, содержащее в себе изменение упругой энергии.

Уравнение (8) позволяет также определить связь между давлением и долей высокоспиновой фазы в соединениях:

$$P(\gamma_{HS}) = \frac{T \left[k_B \ln\left(\frac{1 - \gamma_{HS}}{\gamma_{HS}}\right) + \Delta S_{HL} \right] - \Delta H_{HL}(P) + 2\gamma_{HS}\Gamma}{\Delta V_{HL}}.$$
 (9)

В первом приближении, считая, что ΔV_{HL} и ΔS_{HL} определяются только изменением спиновых состояний ионов Fe²⁺, их можем взять из температурно-индуцированных HL-переходов при атмосферном давлении [22]. Для соединения Fe(3-Fpy)₂Ni(CN)₄ $\Delta S = 87.4$ J/(K·mol) и $\Delta V = 36.30085$ Å³, а для соединения Fe(3-Fpy)₂Pt(CN)₄ $\Delta S = 91.7$ J/(K·mol) и $\Delta V = 36.3458$ Å³. Тогда $\Delta H(P)$ и Г для индуцированных давлением HL-переходов при постоянной температуре можно получить подгонкой уравнения (9) к экспериментальной кривой $\gamma_{HS}(P)$ (табл. 5).

Таблица 5

Параметры *△H*(*P*) и Г для индуцированных давлением HL-переходов при комнатной температуре

Соотнионно	$\Delta H(P)$	Γ	
Соединение	H	K	
Fe(3-Fpy) ₂ Pt(CN) ₄	14.07	816.69	
Fe(3-Fpy) ₂ Ni(CN) ₄	-71.69	952.60	

Хорошее совпадение числовых значений параметра взаимодействия высоко- и низкоспиновых комплексов, полученных из двух типов экспериментов, указывает на то, что HL-переходы, температурно-индуцированные под давлением и индуцированные давлением при постоянной температуре, определяются одним и тем же типом взаимодействия комплексов. При температурно-индуцированных HL-переходах под давлением изменение энергии упругого взаимодействия комплексов из-за деформации кристаллической решетки происходит вследствие изменения как температуры, так и давления. А при HL-переходах, индуцированных давлением при постоянной температуре, ее изменение происходит только за счет изменения внешнего давления. Поэтому сравнение энергии упругого взаимодействия комплексов изза деформации кристаллической решетки в различных типах экспериментов не представляется возможным.

Заключение

В данной работе были проведены экспериментальные исследования влияния давления на спиновое состояние ионов Fe^{2+} в двух изоструктурных соединениях с общей формулой $Fe(3-Fpy)_2M(CN)_4$, допированных ионами металлов (M = Ni, Pt) с различными атомными радиусами.

Установлено, что с увеличением радиуса иона допирующего металла понижается давление HL-перехода, что интерпретируется как возрастание «внутреннего» давления в исследуемых комплексных соединениях.

Для Fe(3-Fpy)₂Ni(CN)₄ и Fe(3-Fpy)₂Pt(CN)₄ температура и давления переходов, индуцированных давлением при постоянной температуре, совпадают с температурой переходов и давлениями температурно-индуцированных переходов под давлением.

Проведен сравнительный анализ параметра взаимодействия высоко- и низкоспиновых комплексов, определенного из экспериментов по изучению HL-переходов, температурно-индуцированных под давлением и индуцированных давлением при постоянной температуре. Анализ указывает на одинаковый тип взаимодействия спин-активных комплексов при HL-переходах, индуцируемых различными способами.

- 1. A. Hauser, Adv. Polym. Sci. 233, 49 (2004).
- 2. V. Niel, A.L. Thompson, A.E. Goeta, C. Enachescu, A. Hauser, A. Galet, M.C. Munoz, J.A. Real, Chem. Eur. J. 11, 2047 (2005).
- 3. E. König, G. Ritter, S.K. Kulshreshta, J. Waigel, H.A. Goodwin, Inorg. Chem. 23, 1896 (1984).
- 4. E. König, G. Ritter, H. Grünsteudel, J. Dengler, J. Nelson, Inorg. Chem. 33, 837 (1994).
- 5. T. Granier, B. Gallois, J. Gaultier, J.-A. Real, J. Zarembowitch, Inorg. Chem. 32, 5305 (1993).
- 6. V. Ksenofontov, H. Spiering, A. Schreiner, G. Levchenko, H.A. Goodwin, P. Gütlich, J. Phys. Chem. Solids **60**, 393 (1999).
- 7. A. Galet, A.B. Gaspar, M.C. Munoz, G.V. Bukin, G. Levchenko, J.A. Real, Adv. Mater. 17, 2949 (2005).
- 8. J.A. Real, A.B. Gaspar, V. Niel, M.C. Munoz, Coord. Chem. Rev. 236, 121 (2003).
- 9. V. Ksenofontov, A.B. Gaspar, G. Levchenko et al., J. Phys. Chem. B108, 7723 (2004).
- 10. G.G. Levchenko, V. Ksenofontov, A.V. Stupakov et al., Chem. Phys. 277, 125 (2002).
- 11. A.B. Gaspar, G. Agusti, C.J. Martinez, G.G. Levchenko, J.A. Real, Inorg. Chim. Acta 358, 4089 (2005).
- 12. A. Galet, A.B. Gaspar, M.C. Munoz et al., Inorg. Chem. 45, 9670 (2006).
- 13. H.G. Drickamer, C.W. Frank, C.P. Slichter, Proc. Nat. Acad. Sci. USA 69, 933 (1972).
- 14. D.C. Fisher, H.G. Drickamer, J. Chem. Phys. 54, 4825 (1971).

- 15. C.B. Bargeron, H.G. Drickamer, J. Chem. Phys. 55, 3471 (1971).
- 16. Г.В. Букин, Г.Г. Левченко, Ana Galet, Jose A. Real, ФТВД 16, № 1, 51 (2006).
- 17. Г.В. Букин, Г.Г. Левченко, А. Gaspar, J.A. Real, ФТВД 17, № 4, 12 (2007).
- 18. Г.Г. Левченко, Г.В. Букин, А.Б. Гаспар, Дж.А. Реал, ЖФХ 83, 1085 (2009).
- 19. В.А. Волошин, А.И. Касьянов, ПТЭ 5, 170 (1982).
- 20. J. Jeftic, R. Hinek, S.C. Capelli, A. Hauser, Inorg. Chem. 36, 3080 (1997).
- 21. T. Granier, B. Gallois, J. Gaultier, J.A. Real, Inorg. Chem. 32, 5305 (1993).
- 22. V. Martinez, A.B. Gaspar, M.C. Munoz, G.V. Bukin, G. Levchenko, J.A. Real, Chem. Eur. J. 15, 10960 (2009).
- 23. C.P. Slichter, H.G. Drickamer, J. Chem. Phys. 56, 2142 (1972).
- 24. C.P. Köhler, R. Jakobi, E. Meissner, L. Wiehl, H. Spiering, P. Gütlich, J. Phys. Chem. Solids 51, 239 (1990).
- 25. H.G. Drickamer, V.C. Bastron, D.C. Fisher, D.C. Grenoble, J. Solid State Chem. 2, 94 (1970).
- 26. V. Ksenofontov, A.B. Gaspar, P. Gütlich, Top Curr Chem. 235, 23 (2004).
- 27. Г.Г. Левченко, ФТВД 17, № 4, 7 (2007).

Г.В. Букін, С.О. Терехов, А.В. Gaspar, J.A. Real, Г.Г. Левченко

ПЕРЕХІД ВИСОКИЙ СПІН–НИЗЬКИЙ СПІН В МЕТАЛООРГАНІЧНИХ СТРУКТУРАХ 2*D*-ГОФМАНІВСЬКОГО ТИПУ Fe(3-Fpy)₂M(CN)₄ ПІД ТИСКОМ

Методом аналізу поглинання видимого світла досліджено індуковані зовнішним гідростатичним тиском при кімнатній температурі переходи високий спін–низький спін (HL-переходи) іонів двовалентного заліза у високомолекулярних 2D-полімерах із загальною формулою Fe(3-Fpy)₂[$M^{II}(CN)_4$] (3-Fpy – галогенні похідні піридину, M^{II} – допіруючі метали Ni, Pt). Встановлено, що із збільшенням радіусу іона допіруючого металу збільшується тиск переходу. Проведено порівняльний аналіз параметрів взаємодії високо- і низькоспінових комплексів, визначених з експериментів по вивченню HL-переходів, температурно-індукованих під тиском і індукованих тиском при постійній температурі. Аналіз вказує на однаковий тип взаємодії спін-активних комплексів при HL-переходах, індукованих різними способами.

Ключові слова: магнітні матеріали, високий тиск, фазовий перехід, спіновий перехід, комплексні сполуки

G.V. Bukin, S.A. Terekhov, A.B. Gaspar, J.A. Real, G.G. Levchenko

HIGH SPIN–LOW SPIN TRANSITION IN ORGANO-METALLIC STRUCTURES OF 2D HOFMAN-TYPE Fe(3-Fpy)₂M(CN)₄ UNDER PRESSURE

The results of absorption spectroscopy study of the pressure-induced high spin (HS)–low spin (LS) transitions (HL-transition) of the Fe^{2+} ions in 2D isostructural polymers $\text{Fe}(3-\text{Fpy})_2\text{M}(\text{CN})_4$ doped by metal ions (M = Ni, Pt) of different atomic radii are given.

It has been determined that the pressure of transition at constant temperature increases with the atomic radius of a doping metal. A comparative analysis has been done for interaction parameters of high- and low-spin complexes, obtained from the temperatureinduced HL-transition under pressure and the pressure-induced HL-transition at constant temperature. The analysis shows the interaction of spin-active complexes under the HLtransitions induced by different ways to be of identical type.

Keywords: magnetic materials, high pressures, phase transition, spin transition, complex compounds

Fig. 1. Absorption spectra for Fe(3-Fpy)₂Pt(CN)₄ under discrete increase (*a*) and decrease (*b*) of pressure, GPa: $a: \Box - 10^{-4}$, $\circ - 0.247$, $\triangle - 0.333$, $\nabla - 0.427$, $\diamond - 0.488$, $\triangleleft - 0.614$, $\triangleright - 0.775$, $\bigstar - 0.931$; $b: \Box - 10^{-4}$, $\circ - 0.123$, $\triangle - 0.225$, $\nabla - 0.304$, $\diamond - 0.393$, $\triangleleft - 0.505$, $\triangleright - 0.727$, $\And - 0.931$. The insert shows the transmission spectrum of the compound at a pressure of 0.931 GPa in the entire (330–840 nm) range of experimental plant spectral sensitivity

Fig. 2. Absorption spectra for Fe(3-Fpy)₂Pt(CN)₄ under discrete increase (*a*) and decrease (*b*) of pressure, GPa: *a*: $\Box - 10^{-4}$, $\circ - 0.130$, $\Delta - 0.242$, $\nabla - 0.353$, $\diamond - 0.477$, $\triangleleft - 0.719$, $\triangleright - 0.878$; *b*: $\Box - 10^{-4}$, $\circ - 0.177$, $\Delta - 0.261$, $\nabla - 0.302$, $\diamond - 0.366$, $\triangleleft - 0.700$, $\triangleright - 0.878$

Fig. 3. Dependences of the high-spin phase share on pressure: $a - \text{Fe}(3-\text{Fpy})_2\text{Ni}(\text{CN})_4$, $\delta - \text{Fe}(3-\text{Fpy})_2\text{Pt}(\text{CN})_4$. Solid lines are drawn in hand for a better visual perception of transition