PACS: 81.40.Rs, 66.30.-h, 81.40.-z

А.И. Дерягин¹, Б.М. Эфрос², В.А. Завалишин¹, В.В. Сагарадзе¹, Н.Б. Эфрос², А.Р. Кузнецов¹, В.Н. Варюхин²

ЯВЛЕНИЕ МЕХАНО-ИНДУЦИРОВАННОГО АТОМНОГО РАССЛОЕНИЯ В Fe-Cr-Ni-СПЛАВАХ ПРИ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ

¹Институт физики металлов УрО РАН ул. С. Ковалевской, 18, г. Екатеринбург, 620041, Россия

²Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина

Статья поступила в редакцию 9 февраля 2010 года

Исследовано низкотемпературное (25°С) перераспределение никеля при интенсивной пластической деформации (e > 9) сдвигом под высоким давлением 8 GPa в стабильных аустенитных сплавах X12H30 и X12H40. Деформационно-индуцируемое атомное расслоение ГЦК-сплавов фиксировалось по повышению намагниченности сплавов и появлению ферромагнитных микрообластей с существенно более высокими значениями температуры Кюри. Количественные оценки показали, что механо-индуцированное перераспределение легирующих элементов можно описать системой уравнений для диффузионных потоков образующихся точечных дефектов на стоки, что вызывает, как и в случае облучения, формирование радиационно-индуцированных сегрегаций на межзеренных границах.

Ключевые слова: аустенитные сплавы, интенсивная пластическая деформация, давление, расслоение, ферромагнитные кластеры

Ранее [1] нами было обнаружено низкотемпературное (25°С) расслоение ГЦК-твердого раствора стабильных аустенитных сплавов типа X12H30 при интенсивной пластической деформации, способствующее образованию обогащенных никелем ферромагнитных кластеров, которые переводят сплав X12H30 из парамагнитного состояния в суперпарамагнитное. Максимальная температура Кюри дисперсных ферромагнитных выделений ~ 130°С, что отвечает локальному увеличению концентрации Ni в этих кластерах до ~ 40% при соответствующем обеднении их по железу. Подобное перераспределение легирующих элементов, как и в случае радиационноиндуцированного расслоения твердого раствора при облучении [2], объяснялось диффузией точечных дефектов, возникающих при пластической деформации, на стоки (границы зерен, фрагментов, фаз и др.), что приводит к

© А.И. Дерягин, Б.М. Эфрос, В.А. Завалишин, В.В. Сагарадзе, Н.Б. Эфрос, А.Р. Кузнецов, В.Н. Варюхин, 2010

обогащению или обеднению микрообластей легирующими элементами и, как следствие, к изменению их магнитных свойств. Обнаруженное явление наблюдалось в дальнейшем и на других сплавах [3]. В работе [4] была сделана попытка теоретического объяснения подобного процесса, где расслоение объяснялось деформационно-индуцированной приграничной генерацией неравновесных вакансий. Мигрирующие вакансии при их самосогласованном взаимодействии с компонентами сплава, имеющими разную диффузионную подвижность, вызывают наблюдаемое расслоение сплава.

В данной статье приведены некоторые результаты исследований расслоения ГЦК у-фазы в сплавах на основе твердого раствора Fe–Cr–Ni при интенсивной пластической деформации [5–8].

Экспериментальные результаты и их обсуждение

1. Влияние интенсивной пластической деформации на магнитные свойства сплава X12H30

На рис. 1 приведены зависимости удельной намагниченности σ сплава X12H30 от напряженности магнитного поля *H* для исходного недеформированного образца и образцов, деформированных на различные степени. В недеформированном состоянии зависимость удельной намагниченности от напряженности магнитного поля линейна, что характерно для парамагнетиков. Малые и средние степени деформации сплава практически сохраняют линейную зависимость $\sigma(H)$, при этом магнитная восприимчивость почти не изменяется. При степенях деформации e > 1.6 зависимость $\sigma(H)$ становится нелинейной, причем гистерезис зависимости $\sigma(H)$ отсутствует, что характерно для суперпарамагнетиков, т.е. для локальных ферромагнитных областей малых размеров (кластеров) в парамагнитной матрице. Дальнейшее увеличение степени деформации вызывает рост удельной намагниченности, которая при $e \sim 8$ в поле 2·10⁵ А/т почти в 6 раз больше ее значения для недеформированного состояния. Зависимость намагниченности от степени пластической деформации представлена на рис. 2. Видно, что при е > 8 рост удельной намагниченности прекращается и зависимость σ(е) выходит на уровень насыщения.

Рис. 1. Зависимость удельной намагниченности сплава X12H30 при 25°C от величины магнитного поля после различной холодной деформации $e: + -0, \circ - 3.1, \bullet - 3.8, \bullet - 6.0, \bullet - 6.7, \bullet - 7.4, \times - 8.1, \Delta - 9.4$

Рис. 3. Зависимость удельной намагниченности деформированного сплава X12H30 от величины магнитного поля при различных температурах: a - e = 3.8, измерение при 18°C проведено после нагрева до 206°C; $\delta - e = 9.4$, измерение при 21°C проведено после нагрева до 243°C

На рис. 3,*а* приведены зависимости $\sigma(H)$ при различных температурах (17–318°С) сплава X12H30, предварительно деформированного на e = 3.8. При температуре выше ~ 130°С сплав переходит из суперпарамагнитного состояния в парамагнитное – зависимость $\sigma(H)$ становится линейной. Мож-

но считать, что наибольшая температура Кюри T_C ферромагнитных кластеров деформационного происхождения близка к 130°С. В процессе деформации сплава X12H30 (e = 3.8) происходит увеличение T_C отдельных микрообластей более чем на 200°С – от исходного значения –80 до 130°С. При снижении температуры магнитных измерений от 200 до 20°С наблюдается практически обратимое восстановление нелинейной зависимости $\sigma(H)$. Аналогичные зависимости $\sigma(H)$ при различных температурах приведены на рис. 3, δ для образца, деформированного сдвигом при кручении (e = 9.4). Переход в парамагнитное состояние происходит в нем при температуре ~ 160°С, что заметно выше, чем для образцов с меньшей степенью деформации.

По данным рис. 3, а также по функциям $\sigma(H)$ для образцов, деформированных до промежуточных степеней, построены зависимости $\sigma(T)$ в поле $H = 2 \cdot 10^5$ A/m (рис. 4). Для недеформированного образца наблюдается характерная для парамагнитного состояния монотонно убывающая зависимость $\sigma(T)$. Для образцов, подвергнутых интенсивной пластической деформации, наблюдается типичная высокотемпературная часть зависимости $\sigma(T)$

Рис. 4. Зависимость удельной намагниченности сплава X12H30 в поле $2 \cdot 10^5$ A/m от температуры после различной холодной деформации *e*: $\diamond - 0$, $\bullet - 3.8$, $\blacktriangle - 6.0$, $\blacksquare - 6.7$, $\circ - 7.4$, $\blacklozenge - 8.1$, $\triangle - 9.4$

в области перехода ферромагнитных кластеров в парамагнитное состояние. На данных графиках менее отчетливо, чем на рис. 3, но тем не менее заметно, что с увеличением степени пластической деформации повышается температура Кюри T_C ферромагнитных кластеров (кривые сдвигаются в высокотемпературную область). Особо следует подчеркнуть тот факт, что, начиная со степеней деформации e = 8 и выше, кривые $\sigma(T)$ практически совпадают (для этих об-

разцов зависимость $\sigma(e)$ достигает насыщения) (см. рис. 2). Таким образом, при e > 8 температура Кюри ферромагнитных кластеров деформационного происхождения изменяется мало. При нагреве сплава до 200°С и возврате к комнатной температуре, как и в образцах с меньшей деформацией, наблюдается практически обратимое изменение магнитных свойств.

2. Влияние интенсивной пластической деформации на магнитные свойства сплава X12H40

Для анализа процессов расслоения по легирующим элементам были проведены аналогичные исследования на сплаве X12H40. Предполагалось, что увеличение содержания никеля с 30 до 40% не изменит характер расслоения. В исходном недеформированном состоянии сплав представляет собой ферромагнетик с узкой петлей гистерезиса. В отличие от сплава X12H30, где ферромагнитные кластеры при 25°С имеют удельную намагниченность значительно выше, чем парамагнитная матрица, в сплаве X12H40 трудно ожидать сильного изменения магнитных свойств при 25°С после образования аналогичных ферромагнитных кластеров на фоне ферромагнитной γ -матрицы с высокой удельной намагниченностью. Действительно, значения намагниченности для различных степеней деформации (e = 0.1-9.2) при 25°С изменяются мало (на 2–6%).

Больший интерес представляет зависимость $\sigma(H)$ для температур вблизи и выше температуры Кюри. На рис. 5,*а* приведена такая зависимость в интервале температур 23–317°C для недеформированного сплава. Видно, что сплав переходит в парамагнитное состояние при $T \sim 120$ °C, а при возврате к комнатной температуре после нагрева до 317°C наблюдается обратимое восстановление значений $\sigma(H)$. Аналогичные зависимости для образца, подвергнутого

Рис. 5. Зависимость удельной намагниченности сплава X12H40 от величины магнитного поля при различных температурах: a – недеформированное состояние, измерение при 24°C проведено после нагрева до 317°C; δ – деформированное состояние (e = 9.2), измерение при 23°C проведено после нагрева до 262°C

Рис. 6. Зависимость удельной намагниченности сплава X12H40 в магнитном поле $2 \cdot 10^5$ А/т от температуры после различной холодной деформации *e*: $\Diamond - 0$, $\blacksquare - 3.8$, $\blacklozenge - 5.8$, $\circ - 7.9$, $\blacktriangle - 9.2$

интенсивной пластической деформации, представлены на рис. 5, δ , из которого следует, что переход в парамагнитное состояние происходит при $T \sim 180^{\circ}$ С, что на 60° выше, чем для недеформированного образца. При нагреве до 200°С и возврате к комнатной температуре изменение магнитных свойств обратимо.

Таким образом, в сплаве X12H40, как и в сплаве X12H30, наблюдается повышение температуры Кюри ферромагнитных кластеров с увеличением степени деформации. Наглядно это явление демонстрируют графики зависимости $\sigma(T)$ в поле $H = 2 \cdot 10^5$ А/т для образцов с различной степенью деформации, представленные на рис. 6. По мере роста степени деформации кривые $\sigma(T)$ сдвигаются в область более высоких температур. Однако в сплаве X12H40 интенсивность роста температуры Кюри с деформацией ниже, чем в сплаве X12H30. Кроме того, в сплаве X12H40 при $e \ge 6$ кривые $\sigma(T)$ практически совпадают, и температура Кюри ферромагнитных кластеров деформационного происхождения перестает увеличиваться. Значение критической степени деформации при этом заметно ниже, чем в сплаве X12H30.

3. Область температур Кюри кластеров

Деформационно-индуцированные кластеры имеют некоторую вариацию составов, так как их значения T_C распределены по довольно широкой области температур. Очень чувствительной характеристикой в области температуры Кюри является поведение намагниченности с изменением температуры, отражаемое производной $d\sigma(T)/dT$. Если использовать относительную производную ($d\sigma(T)/dT$)/ $\sigma(T)$, то разномасштабные данные по изменению намагниченности с ростом температуры при разных температурах отражаются в одинаковом масштабе. Относительность этой величины позволяет с ее помощью также сравнивать сплавы X12H30 и X12H40 между собой. Выясним физический смысл этой характеристики. Поскольку вклад кластеров в намагниченность преобладает над матрицей, можно полагать, что величина $d\sigma(T)/dT$ при данной температуре T приблизительно пропорциональна объемной доле кластеров, имеющих температуру Кюри, равную этой температуре T, поскольку $d\sigma(T)/dT$ имеет для них наибольшую величину. Также можно полагать, что величина $\sigma(T)$ приблизительно пропорциональна объемной доле кластеров, имеющих температуру Кюри, равную этой температуре также можно полагать, что величина $\sigma(T)$ приблизительно пропорциональна объемной доле кластеров, имеющих температуру Кюри, равную этой температуре также можно полагать, что величина $\sigma(T)$ приблизительно пропорциональна объемной доле кластеров, имеющих температуру Кюри, равную этой температуре также можно полагать, что величина $\sigma(T)$ приблизительно пропорциональна объемной доле кластеров, имеющих температуру величину. Также можно полагать, что величина $\sigma(T)$ приблизительно пропорциональна объемной состаки.

емной доле кластеров, имеющих температуру Кюри выше данной. Следовательно, относительная производная от намагниченности по температуре примерно пропорциональна отношению объемной доли кластеров с данной температурой Кюри к объемной доле кластеров, имеющих температуру Кюри выше данной. Для ферромагнетика без расслоения зависимость от температуры величины $(d\sigma(T)/dT)/\sigma(T)$, измеренная в фиксированном магнитном поле, имеет резкий максимум при температуре Кюри. При расслоении можно ожидать снижение этого максимума и одновременно его «размытие» на область температур выше исходной температуры Кюри.

На рис. 7,*а* приведены зависимости $(d\sigma(T)/dT)/\sigma(T)$ от температуры для сплава X12H30. Для недеформированного состояния наблюдается плавный спад с увеличением температуры. Максимум на кривой, обусловленный температурой Кюри, не наблюдается, так как $T_C = -80^{\circ}$ С, что ниже комнатной температуры. Для деформированного состояния (e = 3.8) наблюдается «размытый» максимум при $T \sim 60-90^{\circ}$ С, обусловленный образованием ферромагнитных кластеров с некоторой вариацией по величине T_C .

Рис. 7. Относительная производная удельной намагниченности $(d\sigma(T)/dT)/\sigma(T)$ в зависимости от температуры для сплавов X12H30 (*a*) и X12H40 (*б*) после различной холодной деформации *e*; измерения проведены в магнитном поле 2·10⁵ A/m

После интенсивной пластической деформации кручением (e = 8.1) максимум смещается в область температур ~ 140°С. По вышеназванным причинам максимум также «размыт». Аналогичные зависимости построены для сплава X12H40 (рис. 7, δ). В недеформированном состоянии виден отчетливый максимум при T = 90°С, что близко к температуре Кюри данного сплава. По мере увеличения степени деформации наблюдается снижение максимума при T = 90°С и образование второго «размытого» максимума в области $T \sim 180$ °С. Можно также заметить, что в обоих сплавах в сильнодеформированном состоянии начинается быстрый спад относительной производной до величины недеформированного состояния при температуре более 240°С, что свидетельствует о переходе всех деформационно-индуцированных кластеров в парамагнитное состояние. Таким образом, размытие максимума при температуре Кюри и возникновение других максимумов в сильнодеформированных сплавах X12H30 и X12H40 свидетельствуют о появлении в них микрообластей с отличным от матрицы составом.

4. Структура сплава X12H30 после интенсивной пластической деформации

На рис. 8 приведена структура сплава X12H30 после прокатки с обжатием 92% (*a*) и дополнительного сдвига под высоким давлением при кручении образца в наковальнях Бриджмена на 1, 5 и 10 оборотов (e = 6.7, 8.3 и 9.0) ($\delta - \partial$).

Видно, что структура после прокатки состоит из достаточно протяженных деформационных субзерен и двойников деформации. Сильное измельчение зерна наступает уже после дополнительного сдвига при одном обороте образца в наковальнях Бриджмена (e = 6.7). Зерно уменьшается до 25–100 nm.

Рис. 8. Структура сплава X12H30 в светлом (a, δ) и темном (e- ∂) полях после деформации при 24°С прокаткой (e = 2.5 (a)) и деформации сдвигом под давлением 8 GPa (δ - ∂). Суммарная деформация e составляет 6.7 (δ , e), 8.3 (e), 9.0 (∂)

Наблюдается сильная разнозернистость. Дальнейшая деформация несколько уменьшает размер зерен и снижает разнозернистость (рис. $8, \delta - \partial$). При деформации сдвигом под высоким давлением мелкие зерна разворачиваются относительно друг друга, о чем свидетельствует трансформация электронограммы от монокристалла в кольцевую электронограмму от поликристаллического образца [9]. По границам дисперсных зерен наблюдается повышенная плотность дислокаций. По-видимому, эта приграничная зона микрокристаллов толщиной до ≈ 5 nm, являющаяся эффективным стоком для точечных дефектов, обогащается никелем.

Нужно отметить, что образованные в процессе холодной пластической деформации (25°С) ферромагнитные кластеры устойчивы до достаточно высоких температур. В работе [1] показано, что для деформированных образцов сплава X12H30 рекристаллизация и полный возврат магнитных свойств наблюдаются только после отжига при T = 600°С в течение 30 min.

5. Причины атомного расслоения в исследованных сплавах при интенсивной пластической деформации

Как показано на рис. 1, а, увеличение степени деформации до значений, существенно превышающих полученные в работе [1], посредством сдвига при кручении под высоким квазигидростатическим давлением приводит к дальнейшему росту удельной намагниченности, что свидетельствует об увеличении концентрации ферромагнитных кластеров и росте содержания никеля в них. Образование кластеров в сплавах может быть обусловлено увеличением скорости диффузии на несколько порядков [10] в процессе холодной пластической деформации. Коэффициент диффузии при этом может приближаться к значениям коэффициента диффузии при предплавильных температурах [11]. Генерируемые движущимися дислокациями избыточные неравновесные вакансии [12,13] направленно перемещаются на стоки – искаженные границы новых зерен и фрагментов деформационного происхождения. С другой стороны, возникает противоток атомов легирующих элементов с различными скоростями навстречу вакансиям. Междоузельные атомы легирующих элементов, возникающие при деформации, также мигрируют на стоки. В результате образуются микрообласти (кластеры) с измененным составом, в частности они обогащаются никелем. Причиной такого явления, ранее обнаруженного на облученных высокоэнергетическими частицами сплавах [14], называют обратный эффект Киркендалла, приводящий к расслоению сплавов или формированию атомных приграничных сегрегаций в результате диффузии точечных дефектов на стоки.

6. О приграничной концентрации никеля по результатам магнитных измерений

Температура Кюри определяется обменным магнитным взаимодействием, реализующимся на расстояниях порядка постоянной решетки, и относится к структурно-нечувствительным параметрам. Действительно, даже для отдельных частиц Ni размером 25–50 nm она понижается всего на 5–10°C [15]. Поэтому возникает возможность использовать T_C для анализа расслоения сплавов, поскольку ее изменения обусловлены в основном изменением состава кластеров, а не внутренними напряжениями и дроблением зерна.

Попытаемся оценить состав деформационно-индуцированных кластеров в ГЦК-сплавах Fe–Cr–Ni по изменению значений T_C . Рассмотрим диаграмму на рис. 9 из работы [16], где приведены изолинии температуры Кюри T_C в зависимости от состава системы Fe-Ni–Cr в аустенитной области. Исходное состояние сплавов X12H30 (Fe₅₈Ni₂₉Cr₁₃ – в at.%) и X12H40 (Fe_{48.5}Ni_{38.5}Cr₁₃ – в at.%) показано на диаграмме точками 2 и 1 соответственно. Проанализируем возможные варианты деформационно-индуцированного расслоения трехкомпонентных ГЦК-сплавов Fe–Ni–Cr в области основных стоков точечных дефектов – вблизи границ зерен и фрагментов.

Рис. 9. Изолинии температуры Кюри сплава Fe–Ni–Cr в аустенитной области составов [16]

При расслоении, когда железо замещает хром, т.е. $Fe_{58+x}Ni_{29}Cr_{12-x}$, а в теле зерна $Fe_{58-y}Ni_{29}Cr_{13+y}$ (*x* и *y* связаны соотношением xc = y(1 - c), где *c* – атомная доля границ), максимальная температура Кюри в соответствии с диаграммой на рис. 9 должна возрастать с интенсивностью ~ 15 deg/%, не превышая 70°С даже при полном замещении хрома железом на границе. Этот вариант расслоения противоречит эксперименту. Для сплава X12H40 в этом случае максимальная температура Кюри будет расти быстрее, чем в сплаве X12H30 (~ 20%), и может подняться до 370°С при полном замещении хрома железом на границе.

Возможное обогащение границ зерен и фрагментов никелем может развиваться по двум основным вариантам: 1) при практически неизменном содержании хрома за счет замещения атомами никеля атомов железа в приграничной зоне; 2) при одновременном изменении концентрации никеля и хрома в области границ. Экспериментально наблюдаемое радиационно-индуцированное увеличение концентрации никеля на границах зерен при ~ 570°C обычно сопровождается обеднением этих границ по хрому [2]. Рассмотрим первый вариант такого приграничного расслоения, связанный с заменой атомов железа атомами никеля: в сплаве 1 (X12H30) – Fe_{58-x}Ni_{29+x}Cr₁₃ и в сплаве 2 (X12H40) – Fe_{48.5-x}Ni_{38.5+x}Cr₁₃. При неизменном

содержании хрома (13 at.%) увеличение концентрации никеля (за счет железа) определяется на диаграмме (рис. 9) движением точек 1 и 2 по горизонтали влево - параллельно нижней стороне концентрационного треугольника. В сплаве X12H30 температура Кюри T_C будет сначала возрастать примерно до 200°С (при x = 20), а затем несколько снижаться. Вблизи максимума (43–57% Ni) T_C будет меняться слабо, оставаясь в пределах 180–200°С (рис. 9). В сплаве Х12Н40 максимальная температура Кюри будет расти слабее (~ на 13 deg/%) и при 43–57% Ni T_C также будет мало меняться, оставаясь на уровне 180-200°С. Экспериментальная ситуация близка к указанной выше. В обоих сплавах с увеличением степени деформации и повышением концентрации неравновесных вакансий T_C сначала растет до 160-180°C, а затем практически прекращает повышаться. Температура Кюри в сплаве X12H30 увеличивается более чем на 200°С от недеформированного состояния, а в сплаве X12H40 она возрастает только на ~ 90°С. Причем в сплаве X12H40 T_C перестает повышаться при существенно меньших степенях деформации, чем в сплаве Х12Н30.

При втором варианте формирования концентрационных сегрегаций (одновременное приграничное изменение концентрации Ni и Cr в процессе деформации) будет наблюдаться следующая ситуация. Одновременное обогащение границ никелем и хромом в соответствии с диаграммой (рис. 9) должно изменять положение T_C в существенно меньшей степени (всего на единицы и десятки градусов), чем наблюдается экспериментально (см. перемещение точек 1 и 2 влево и вверх в концентрационном треугольнике). Поэтому такой вариант концентрационных изменений при деформации экспериментально не подтверждается. Если атомы никеля будут в заметной степени замещать атомы хрома и железа на границах деформационных фрагментов (см. движение точек 1 и 2 влево с наклоном вниз), то при деформации должен наблюдаться постоянный подъем T_C на 300–400°C и больше. Это также противоречит эксперименту.

Отметим [17], что для тройного сплава Fe–Ni–Cr при постоянном содержании хрома максимум по температуре Кюри соответствует также максимуму намагниченности насыщения. Для сплавов с 13 at.% Cr он приходится на 50–55 at.% Ni.

Наблюдаемое увеличение удельной намагниченности и температуры Кюри в сильнодеформированных сплавах позволяет с большой долей вероятности заключить, что при деформации сплавов X12H30 и X12H40 в основном осуществляется расслоение по типу железо–никель, т.е. Ni из тела зерна уходит на границы, замещая Fe, который уходит в тело зерна, а Cr практически остается на месте. Это подтверждается следующими экспериментальными данными:

1) максимальная температура Кюри при большой деформации в сплаве X12H30 ~ 160°C, в сплаве X12H40 ~ 180°C. Оценка из относительной производной по температуре от намагниченности дает усредненные значения T_C соответственно 130 и 180°C;

2) останавливается рост намагниченности и температуры Кюри с повышением степени деформации, и в сплаве X12H30 для этого требуется деформация $e \sim 8$, в сплаве X12H40 – $e \sim 6$;

3) начальная интенсивность увеличения намагниченности или температуры Кюри при деформации в сплаве X12H30 примерно в полтора раза выше, чем в сплаве X12H40.

Таким образом, если и имеет место уменьшение концентрации хрома на вакансионных стоках при холодной деформации, то такое изменение должно быть незначительным. Наиболее вероятно развитие процесса обогащения никелем границ зерен и фрагментов при сильной холодной деформации за счет замещения преимущественно атомов железа. Можно полагать, что в сплаве X12H30 после сильной холодной деформации ($e \ge 8$) при росте максимальной T_C от -80 до 130–160°C концентрация никеля на стоках точечных дефектов (границы деформационных фрагментов и зерен) достигает 40–50 at.%, а в сплаве X12H40 с деформацией $e \ge 6$, где максимальная T_C увеличивается с 90 до 180°C, концентрация Ni возрастает до величины более 50 at.%. В обоих сплавах существуют, естественно, и промежуточные концентрации Ni между исходными и обогащенными зонами.

В связи с этим следует добавить, что ранее [18] нами предполагалось, что наблюдаемое прекращение роста температуры Кюри и намагниченности сплава X12H30 при e > 8 (см. рис. 2) связано со сменой механизма пластической деформации на межзеренное проскальзывание. При этом из-за образования ультрамелкозернистой структуры, возможно, резко уменьшается число источников неравновесных вакансий и замедляется процесс расслоения. Однако вышеприведенные данные по расслоению в сплаве X12H40 ставят под сомнение такое предположение.

7. Диффузионный расчет атомного перераспределения при деформации

Используя рис. 3,6 и 5,*a*, можно также найти объем обогащенной никелем части сплава, образующейся на границах. Для сплава X12H30 при e = 9.4 данный объем находится следующим образом. Из предыдущего анализа тройной диаграммы на рис. 9 и изменения магнитных свойств при деформации видно, что состав обогащенной части сплава близок к составу сплава X12H40. Рассмотрим кривую на рис. 3,*б* (X12H30 при e = 9.4) и кривую на рис. 5,*a* (X12H40, недеформированное состояние) при комнатной температуре. Объем обогащенной части сплава X12H30 составляет примерно 13% и равен отношению удельных намагниченностей для сплава X12H30 при e = 9.4 и для сплава X12H40 (недеформированное состояние) в данной области температур. Отметим, что намагниченность сплавов составов Cr₁₂Ni_xFe_{88-x} в интервале x = 35-70% не отличается более чем в 2 раза [17]. Поэтому сделанная оценка объема обогащенной части сплава не должна существенно измениться при вариации состава кластеров.

Поскольку предполагаемый механизм образования вблизи границ зерен кластеров с более высокой, чем в теле зерна, концентрацией никеля заключается в его диффузии, обусловленной миграцией точечных дефектов на стоки, выполним оценку деформационно-индуцированного расслоения сплавов аналогично случаю радиационного воздействия [10,19,20], которое также приводит к высокой концентрации точечных дефектов. Рассчитаем профиль концентрации сегрегированных атомов возле границы зерна для сплава X12H30 после деформации $e \ge 9.4$, решая систему уравнений диффузии для компонентов сплава и точечных дефектов. Будем строить стационарные распределения, рассматривая их как предельный случай деформационного вызывать дальнейшее расслоение из-за конкурирующего диффузионного выравнивания концентрации компонентов.

Полагаем, что в наших условиях холодной деформации, допускающих небольшой разогрев (*T* = 294–400 K) металла, основное перераспределение легирующих элементов осуществляется за счет диффузии вакансий. Деформационно-индуцированные вакансии мигрируют на стоки – границы зерен. На первом этапе расчета найдем зависимость концентрации вакансий возле границы зерна. Для решения используем систему следующих уравнений диффузии для точечных дефектов [19]:

$$\partial c_{i,v} / \partial t = D_{i,v} \Delta c_{i,v} + G - \alpha c_i c_v + \alpha c_{i0} c_{v0} \tag{1}$$

в пластине толщиной L с граничными условиями

$$c_{i,v}\Big|_{x=0} = c_{i,v0}, \quad dc_{i,v} / dx\Big|_{x=L/2} = 0,$$
 (2)

где $c_{i,v}$ – концентрации междоузлий и вакансий в деформируемом сплаве; $c_{i,v0}$ – равновесные исходные концентрации этих дефектов в ненапряженном кристалле; $D_{i,v}$ – коэффициент диффузии точечных дефектов; G – скорость образования дефектов при деформации; α – коэффициент рекомбинации; x – координата – расстояние от границы в перпендикулярном направлении. В стационарном случае (на этапе установившегося неизменного потока точечных дефектов на границы при сильной деформации с постоянной скоростью, как и при облучении) получено [19] следующее уравнение:

$$\frac{d^2 c_v}{dx^2} + \frac{\alpha \Psi_0}{D_i D_v} c_v - \frac{\alpha c_v^2}{D_i} + \frac{G + \alpha c_{i0} c_{v0}}{D_v} = 0,$$
(3)

где $\Psi_0 = D_v c_{v0} - D_i c_{i0}$. Решение (3) можно выразить в виде зависимости *x* от c_v через эллиптический интеграл первого рода (см. [19]).

Использование решения системы уравнений (1) для пластины в нашем случае кажется разумным в связи с тем, что объем обогащенного сплава $V \approx 0.13$ невелик, и поэтому отношение его приграничной толщины в каждом зерне в приближении сферического зерна, равной $d \approx [1 - (1 - V)^{1/3}]r_0 \approx 2$ nm, к ра-

диусу зерна $r_0 \approx 50$ nm составляет всего 0.04, что является достаточно малой величиной.

Второй этап расчета состоит в окончательном определении концентрационных профилей компонентов от границы в объем зерна. Так как выше было показано, что меняются концентрации только железа и никеля, то будем рассматривать модельный бинарный сплав Fe–Ni с 30 at.% Ni. В работе [20] путем решения системы уравнений для диффузионных потоков точечных дефектов и компонентов получены следующие зависимости для атомной концентрации в бинарном сплаве:

$$c_{\rm A}/(1-c_{\rm A})^{1-g} = H_5(c_v)^g,$$
 (4)

где $g = (d_{A\nu}d_{Bi} - d_{Ai}d_{B\nu})/[D_{\nu0}d_{Bi}(d_{Ai'}/D_{i0} + d_{A\nu}/D_{\nu0})]; H_5$ – нормировочная константа; c_A – концентрация компонента A (в нашем случае A – никель, B – железо); $d_{A\nu}$, $d_{B\nu}$, d_{Ai} , d_{Bi} – парциальные коэффициенты диффузии компонентов; $D_{\nu0}$, D_{i0} – диффузионные коэффициенты в несегрегированном сплаве:

$$D_{\nu 0} = d_{A\nu}c_A + d_{B\nu}(1 - c_A), \quad D_{i0} = d_{Ai}c_A + d_{Bi}(1 - c_A)$$

Приведем значения параметров, входящих в уравнения (3), (4) и использованных в расчете. Равновесные концентрации точечных дефектов в сплаве в недеформированном состоянии рассчитаны по следующим формулам [21]:

$$c_{\nu 0} \approx \exp(-E^{\nu}/kT) \sim 10^{-19}, \quad c_{i0} \approx \exp(-E^{i}/kT) \sim 10^{-36},$$
 (5)

где E^{v} , E^{i} – энергии образования вакансии и междоузлия соответственно: $E^{v} = 1.6 \text{ eV}, E^{i} = 2.9 \text{ eV}$ [22]; k – постоянная Больцмана; T – температура (принято T = 400 K). Отметим, что значения величин E^{v} , E^{i} слабо влияют на результаты расчета.

Парциальные коэффициенты диффузии компонентов d_{Av} , d_{Bv} , d_{Ai} , d_{Bi} находились по известной формуле

$$d \approx d_0 \exp(-E/kT),\tag{6}$$

где d – один из парциальных коэффициентов диффузии; d_0 – предэкспоненциальный множитель (~ 1 cm²/s); E – энергия активации диффузии для данного парциального коэффициента. Значения E, d и d_0 при T = 400 K взяты по данным [20,23,24] для ГЦК-сплава Fe–Ni–Cr: E_{Av} = 1.38 eV, E_{Bv} = 1.25 eV, E_{Ai} = 0.8 eV, E_{Bi} = 0.75 eV, d_{Av} = 3·10⁻¹⁶ cm²/s, d_{Bv} = 6·10⁻¹⁵ cm²/s, d_{Ai} = = 8·10⁻¹¹ cm²/s, d_{Bi} = 4·10⁻¹⁰ cm²/s. Отметим, что если несколько скорректировать два значения, оказывающих наиболее существенное влияние на расчет энергий активации, следующим образом: E_{Av} = 1.25 eV, E_{Bv} = 1.15 eV, то получается соответствующий эксперименту объем обогащенной фазы (13%). Коэффициент рекомбинации $\alpha \approx \mu_R D_i \approx 10^{15} D_i$ взят из работы [25].

Оценим скорость образования точечных дефектов G при деформации. В работе [26] приведены данные о концентрации вакансий $c_v \sim 10^{-3}$ при степени деформации $e \approx 1$ для Ni при комнатной температуре. Примем, что и в

рассматриваемом нами случае концентрация вакансий равна приблизительно этой же величине. Концентрация междоузлий обычно несколько меньше [26]. Для деформации сдвигом под давлением в модели жидкости с большой вязкостью скорость деформации у можно определить следующим образом [27]:

$$\gamma \approx v_{\rm av}/d_1 \sim 0.1 c^{-1}, \quad v_{\rm av} = \omega r_{\rm av} \tag{7}$$

при $\omega \approx 1$ rev/min, $r_{av} \approx 0.1$ cm, $d_1 \approx 0.03$ cm, где ω – угловая скорость вращения наковальни; r_{av} – средний радиус образца; v_{av} – средняя линейная скорость; d_1 – толщина образца. Тогда установившаяся скорость образования вакансий при деформации составляет

$$G \sim c_{\nu}/t \sim 10^{-4} \text{ s}^{-1},$$
 (8)

где $t \approx e/\gamma \sim 10$ s – время, необходимое для получения деформации $e \approx 1$.

Рис. 10. Расчетный концентрационный профиль деформационно-индуцированного распределения никеля возле границы зерна в ГЦК-сплаве Fe + 30 at.% Ni: l – расчет с использованием литературных данных [20,23,24]; 2 – скорректированный расчет для E_{Av} = 1.25 eV, E_{Bv} = 1.15 eV

На рис. 10 приведены рассчитанные нами профили концентрации никеля возле границы зерна при T = 400 K, полученные с использованием решений (3), (4) (кривая 2 представляет концентрационный профиль при скорректированных значениях $E_{Av} = 1.25 \text{ eV}$, $E_{\rm Bv} = 1.15 \, {\rm eV}$). Максимальная расчетная концентрация никеля на границе зерна может составлять примерно 50-55% (кривая 2). Толщина обогащенного никелем слоя достигает 2-3 nm от границы зерна – примерно на такое расстояние простирается сильно обогащенная дислокациями приграничная зона деформационных субмикрокристаллитов. Средняя концентрация

никеля в обогащенной зоне близка к 40%. Представленные расчетные данные достаточно удовлетворительно описывают экспериментальные результаты.

Выводы

1. В процессе интенсивной холодной пластической деформации происходит расслоение Fe–Cr–Ni-сплавов X12H30 и X12H40 с образованием кластеров с повышенной температурой Кюри на границах зерен и деформационных фрагментов.

2. Показано, что при холодной деформации трехкомпонентного сплава происходит расслоение по типу железо-никель, когда никель из тела зерна идет на границы, замещая железо и достигая концентрации более 45%. Перераспределение по хрому при этом существенно меньше.

3. Показано, что вызываемое сильной холодной деформацией обогащение легирующими элементами (никелем) границ зерен в ГЦК-сплавах Fe–Ni–Cr можно описать системой уравнений для диффузионных потоков деформационно-индуцированных точечных дефектов и атомов сплава, как и в случае образования приграничных атомных сегрегаций в процессе облучения высокоэнергетическими частицами.

- 1. В.А. Завалишин, А.И. Дерягин, В.В. Сагарадзе, ФММ 75, вып. 2, 90 (1993).
- 2. P.R. Okamoto, J. Nucl. Mater. 83, 2 (1979).
- 3. А.В. Королев, А.Г. Герасимов, В.А. Казанцев, А.И. Дерягин, ФММ **79**, вып. 2, 136 (1995).
- А.Е. Ермаков, В.Л. Гапонцев, В.В. Кондратьев, Ю.Н. Горностырев, ФММ 88, № 3, 5 (1999).
- 5. А.И. Дерягин, В.А. Завалишин, В.В. Сагарадзе, Б.М. Эфрос, Металлы № 6, 14 (2005).
- 6. А.И. Дерягин, В.А. Завалишин, В.В. Сагарадзе, Б.М. Эфрос, Дефектоскопия № 7, 8 (2007).
- 7. А.И. Дерягин, В.А. Завалишин, В.В. Сагарадзе, А.Р. Кузнецов, В.А. Ивченко, Н.Ф. Вильданова, Б.М. Эфрос, ФММ **106**, 301 (2008).
- 8. А.И. Дерягин, В.А. Завалишин, В.В. Сагарадзе, А.Р. Кузнецов, В.А. Ивченко, Н.Ф. Вильданова, Б.М. Эфрос, Вопросы материаловедения № 3(55), 140 (2008).
- 9. В.А. Теплов, В.П. Пилюгин, ФММ **64**, вып. 1, 93 (1987).
- 10. И.А. Ахиезер, Л.Н. Давыдов, Введение в теоретическую радиационную физику металлов и сплавов, Наукова думка, Киев (1985).
- 11. В.И. Ивлев, ФММ 62, 1218 (1986).
- 12. Б.И. Смирнов, ФТТ **33**, 2513 (1991).
- 13. В.В. Сагарадзе, В.А. Шабашов, Т.М. Лапина, Н.Л. Печеркина, В.П. Пилюгин, ФММ **78**, вып. 6, 49 (1994).
- 14. *Phase* transformations during irradiation, F.L. Nolfi (ed.), Applied Science, London (1983).
- 15. S.A. Nepijko, Europhys. Lett. 31, 567 (1995).
- 16. А.З. Меньшиков, А.Е. Теплых, ФММ 44, 1215 (1977).
- 17. Р. Бозорт, Ферромагнетизм, Изд-во иностр. лит., Москва (1956).
- 18. A.I. Deryagin, V.A. Zavalishin, V.V. Sagaradze, NanoStructured Materials 10, 411 (1998).
- 19. Г.З. Горбатов, А.Л. Ройтбурд, Д.Е. Темкин, ФММ 52, 790 (1981).
- 20. V.A. Pechenkin, J. Nucl. Mater. 186, 269 (1992).
- 21. А. Дамаск, Дж. Динс, Точечные дефекты в металлах, Мир, Москва (1966).
- 22. А.М. Шалаев, Свойства облученных металлов и сплавов. Справочник, Наукова думка, Киев (1985).
- 23. V.A. Pechenkin, J. Nucl. Mater. 207, 303 (1993).
- 24. В.А. Печенкин, Г.А. Эпов, Металлы № 5, 87 (1996).
- 25. H. Wiedersich, P.R. Okamoto, N.Q. Lam, J. Nucl. Mater. 83, 98 (1979).
- 26. Д. Мак Лин, Механические свойства металлов, Металлургия, Москва (1965).
- 27. Л.Д. Ландау, Е.М. Лифшиц, Гидродинамика, Наука, Москва (1988).

А.І. Дерягін, Б.М. Ефрос, В.О. Завалішин, В.В. Сагарадзе, Н.Б. Ефрос, А.Р. Кузнецов, В.М. Варюхін

ЯВИЩЕ МЕХАНО-ІНДУКОВАНОГО АТОМНОГО РОЗШАРУВАННЯ В Fe-Cr-Ni-СПЛАВАХ ПІСЛЯ ІНТЕНСИВНОЇ ПЛАСТИЧНОЇ ДЕФОРМАЦІЇ

Досліджено низькотемпературний (25°С) перерозподіл нікелю при інтенсивній пластичній деформації (e > 9) зсувом під високим тиском 8 GPa у стабільних аустенітних сплавах X12H30 і X12H40. Деформаційно-індуковане атомне розшарування ГЦК-сплавів фіксувалось за підвищенням намагніченості сплавів і появою феромагнітних мікрозон із суттєво більш високими значеннями температури Кюрі. Кількісні оцінки показали, що механо-індукований перерозподіл легувальних елементів можна описати системою рівнянь для дифузійних потоків точкових дефектів, які утворюються, на стоки, що викликає, як і в випадку опромінення, утворення радіаційно-індукованих сегрегацій на міжзеренних границях.

Ключові слова: аустенітні сплави, інтенсивна пластична деформація, тиск, розшарування, феромагнітні кластери

A.I. Deryagin, B.M. Efros, V.A. Zavalishin, V.V. Sagaradze, N.B. Efros, A.R. Kuznetsov, V.N. Varyukhin

MECHANO-INDUCED ATOMIC SEGREGATION IN Fe-Cr-Ni ALLOYS UNDER SEVERE PLASTIC DEFORMATION

Low-temperature (25°C) redistribution of nickel in stable austenific alloys X12H30 and X12H40 during severe plastic deformation (e > 9) by shear at a pressure of 8 GPa has been investigated. The deformation-induced atomic segregation of fcc alloys was registered by magnetization increase and formation of ferromagnetic microregions characterized by elevated Curie temperature. The quantitative estimates have shown that the mechano-induced redistribution of alloying elements can be described by a set of equations for the point-defect diffusion fluxes to the sinks resulting, the same as under radiation, in radiation-induced segregations at intergranular boundaries.

Keywords: austenitic alloys, severe plastic deformation, pressure, segregation, ferromagnetic clusters

Fig. 1. Dependence of specific magnetization of alloy X12H30 at 25°C on magnetic field after cold strain e: + -0, \circ - 3.1, \bullet - 3.8, \bullet - 6.0, \blacksquare - 6.7, \blacktriangle - 7.4, \times - 8.1, Δ - 9.4

Fig. 2. Dependence of specific magnetization of alloy X12H30 at 25°C in magnetic field of $2 \cdot 10^5$ A/m on cold strain degree *e*

Fig. 3. Dependence of specific magnetization of deformed X12H30 alloy on magnetic field at different temperatures: a - e = 3.8, measurement made at 18°C after heating to 206°C; $\delta - e = 9.4$, measurement made at 21°C after heating to 243°C

Fig. 4. Dependence of specific magnetization of alloy X12H30 in the field of $2 \cdot 10^5$ A/m on temperature after cold strain $e: \diamond - 0, \bullet - 3.8, \blacktriangle - 6.0, \blacksquare - 6.7, \circ - 7.4, \bullet - 8.1, \triangle - 9.4$

Fig. 5. Dependence of specific magnetization of alloy X12H40 on magnetic field at different temperatures *T*, °C: *a* – undeformed state, measurement made at 24°C after heating to 317°C; δ – deformed state (*e* = 9.2), measurement made at 23°C after heating to 262°C

Fig. 6. Dependence of specific magnetization of alloy X12H40 in magnetic field of $2 \cdot 10^5$ A/m on temperature after cold strain $e: \diamond -0, \blacksquare -3.8, \diamond -5.8, \circ -7.9, \blacktriangle -9.2$

Fig. 7. Relative derivative of specific magnetization $(d\sigma(T)/dT)/\sigma(T)$ as a function of temperature for alloys X12H30 (*a*) and X12H40 (δ) after cold strain *e*; measurements made in magnetic field of 2.10⁵ A/m

Fig. 8. Bright (a, δ) and dark $(e-\partial)$ field images of X12H30 alloy structure after deformation by rolling (e = 2.5 (a)) at 24°C and by shear at a pressure of 8 GPa $(\delta - \partial)$. Total strain *e* makes 6.7 (δ, e) , 8.3 (e) and 9.0 (∂)

Fig. 9. Isolines of the Curie temperature of Fe–Ni–Cr alloy in austenitic region [16]

Fig. 10. Calculated concentration profile of the deformation-induced distribution of nickel near grain boundary in fcc alloy Fe + 30 at.% Ni: I – calculation by data of [20,23,24]; 2 – corrected calculation for E_{Av} = 1.25 eV, E_{Bv} = 1.15 eV