PACS: 62.25.-g, 62.20.F

В.А. Белошенко, В.Н. Варюхин, В.Ю. Дмитренко, Ю.И. Непочатых, А.Н. Черкасов

ВОЛОКНИСТЫЕ Cu-Fe-КОМПОЗИТЫ, ПОЛУЧЕННЫЕ МЕТОДОМ ПАКЕТНОЙ ГИДРОЭКСТРУЗИИ: СТРУКТУРА, МЕХАНИЧЕСКИЕ И РЕЗИСТИВНЫЕ СВОЙСТВА

Донецкий физико-технический институт им. А.А. Галкина НАН Украины ул. Р. Люксембург, 72, г. Донецк, 83114, Украина E-mail: dmitrenko_v@ukr.net

Статья поступила в редакцию 26 июня 2010 года

Исследованы структура, механические и резистивные свойства волокнистых Cu—Fe-композитов, в которых диаметр железных волокон d варьировался в широких пределах, включая субмикронную область $d \sim 10$ пт. Показано, что зависимости предела прочности и твердости композитов от величины d удовлетворительно описываются соотношениями Холла— Π етча ($X\Pi$). Обнаружено отклонение от правила смесей для удельного электрического сопротивления композитов в наноразмерной области значений d.

Ключевые слова: волокнистый композит, наноструктура, механические свойства, резистивные свойства

Введение

В настоящее время актуальна проблема получения нанокристаллических материалов, обладающих уникальными свойствами. Спектр их применения в различных областях техники очень широк [1–3]. Для формирования наноструктуры используются различные технологии, из которых можно выделить четыре основных [1,2,4]: компактирование нанопорошков, осаждение на подложку, кристаллизация из аморфной фазы, интенсивная пластическая деформация (ИПД). Методы ИПД, к которым относится и используемая в данной работе пакетная гидроэкструзия [5,6], позволяют получать массивные нанокристаллические образцы с практически беспористой структурой.

Эволюция микроструктуры и свойства чистых металлов, подвергнутых ИПД, изучены достаточно хорошо. В меньшей степени это касается многофазных систем, в частности композитов, хотя именно они имеют наибольший потенциал практического применения. Ранее нами показано, что метод пакетной гидроэкструзии может быть успешно использован для получения ферромагнитных Си–Fe-композитов с регулярной структурой магнитной подсисте-

мы, и изучены их магнитные свойства при варьировании размера железных волокон в области 3 nm $\leq d \leq$ 2 mm [7]. Целью настоящей работы является исследование структуры, резистивных и механических свойств волокнистых Cu–Fe-композитов в зависимости от размера железных волокон.

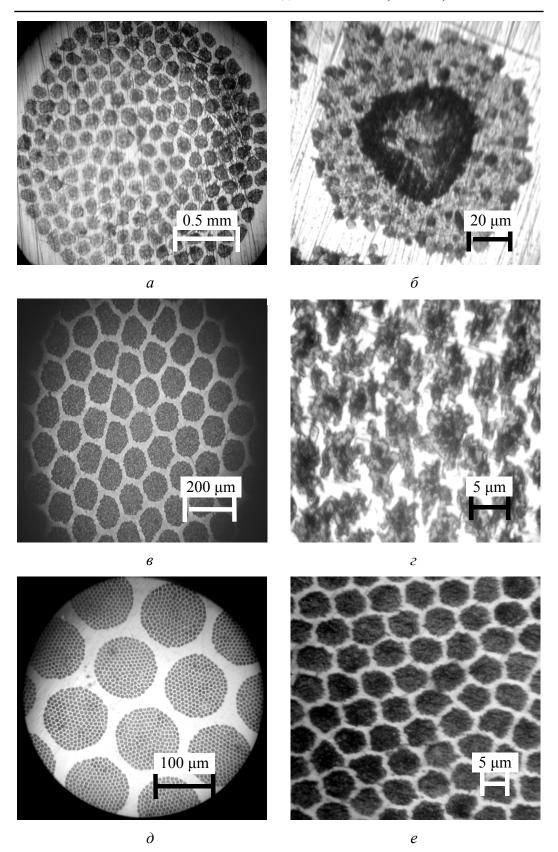
Эксперимент

Технология получения волокнистых Cu–Fe-композитов подробно изложена в работе [8]. Методом последовательной сборки изготовлены композиты с числом волокон n=1 (биметалл), 211, 211^2 , 211^3 , $85\cdot211^3$. На каждом этапе их изготовления исходная заготовка или соответствующая сборка из стренд подвергались четырехкратной гидроэкструзии с последующим многократным волочением до различных конечных диаметров композитных проволок D. Полученные образцы имели различное число волокон, диаметр которых варьировался в широких пределах и рассчитывался с использованием выражения

$$d = D(K/n)^{1/2}, (1)$$

где K – коэффициент объемного содержания железа.

Исследовали образцы, находящиеся как в деформированном, так и отожженном состояниях. Отжиг проводили в вакууме при температуре 550°C в течение 1 h.


Металлографические и рентгеновские исследования выполняли с помощью микроскопа Neophot-2 и дифрактометра ДРОН–3М. Испытание на твердость проводили методом Виккерса при нагрузке 200 g; относительная ошибка измерений – не более 5%. Предел прочности при растяжении образцов диаметром 0.21 mm и длиной 200 mm определяли с использованием разрывной машины ZM-20.

Удельное электрическое сопротивление композитов измеряли по стандартной четырехзондовой методике. Расстояние между токовыми контактами существенно превышало расстояние между потенциальными контактами. В этом случае обеспечивалось условие, при котором эквипотенциальные поверхности в области потенциальных контактов были практически плоскими и перпендикулярными оси образцов.

Экспериментальные результаты

Структура композитов

1. Структура композита в поперечном сечении образца диаметром D=3 mm с числом волокон n=211 представлена на рис. 1,a. Волокна железа упорядоченно расположены в медной матрице. Поскольку гидроэкструзии подвергалась сборка из плотноупакованных биметаллических заготовок, железные сердечники в которых имели круглое поперечное сечение, можно было ожидать, что после процессов деформации они примут форму шестиугольников. Однако, как следует из рис. $1,a,\delta$, форма сечений волокон не является

Рис. 1. Структура Си–Fе-композитов с различным числом волокон: a, $\delta-n=211$; e, $\varepsilon-211^2$; ∂ , $e-211^3$

ни круглой, ни шестиугольной. Обусловлено это значительным различием модулей сдвига меди и железа: $G_{\text{Cu}} \approx 48$ GPa, $G_{\text{Fe}} \approx 85$ GPa, а также наличием воздушных промежутков между биметаллическими заготовками в исходной сборке.

Из рис. 1, δ видно, что волокна существенно неоднородны — имеются три четко выраженные зоны. Ранее [8] нами было установлено, что они различаются величиной микротвердости H_{μ} и, возможно, размером зерен.

- 2. На каждом последующем этапе гидроэкструзии структура композитов становится более сложной. В поперечном сечении композита с $n = 211^2$ (его фрагмент приведен на рис. 1,в) наблюдаются 211 структурных элементов (стренд), каждый из которых содержит 211 волокон. Как и на рис. 1,а, стренды упорядоченно расположены в медной матрице, однако содержат волокна, форма поперечного сечения которых существенно изменилась (рис. 1,г). Она очень далека от «правильной», а расположение волокон заметно отличается от регулярного. Причины этого заложены еще на предыдущем этапе изготовления композитов. Во-первых, при n = 211 (рис. 1,6) волокна не обладают правильной цилиндрической формой. Поэтому при последующей гидроэкструзии набора 211 стренд неоднородности внешней оболочки волокон приводят к их разрушению. Немалую роль при этом играет и различие модулей сдвига меди и железа. Во-вторых, волокна неоднородны и отличаются по величине микротвердости в различных радиальных зонах [8], что также способствует их разрушению. Следовательно, говорить о волокнах при $n \ge 211^2$ можно лишь условно.
- 3. На рис. $1,\partial$ приведен фрагмент сечения композита с числом волокон $n=211^3$. Каждая из структурных единиц, наблюдаемых на рисунке, содержит 211^2 стренд (рис. 1,e). Структура этих стренд, содержащих 211^2 волокон, не может быть исследована методом оптической микроскопии. Обусловлено это тем, что в отличие от стренд, изображенных на рис. 1,e, при $n=211^3$ и D=3 mm расчетный диаметр волокон становится сравним с длиной волны света (таблица). Тем не менее следует ожидать, что при переходе в субмикронную область значений d происходят разрыв волокон и их фрагментация [9].

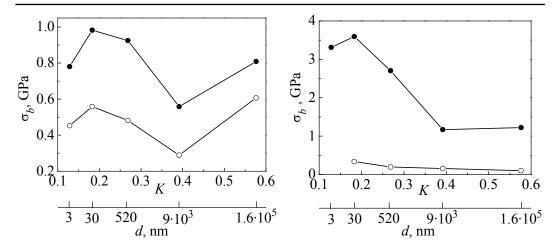
Таблица Параметры исследуемых композитов

Количество волокон	1	211	211 ²	211 ³	85·211 ³
Объемное содержание железа	0.58	0.39	0.27	0.18	0.13
Диаметр образца, тт	Расчетный диаметр волокон				
3	2.28 mm	130 μm	7.4 μm	0.42 μm	38 nm
0.21	160 μm	9 μm	0.52 μm	29 nm	2.7 nm

4. Как показали рентгеноструктурные исследования, в процессе гидроэкструзии и волочения в железной компоненте композитов формируется аксиальная текстура $\langle 110 \rangle$, сохраняющаяся при искажении формы волокон и их фрагментации. Ось второго порядка железа становится параллельной оси проволоки. Подобная текстура характерна для железных и стальных проволок, полученных волочением [10]. В процессе изготовления композитов в медной матрице также возникает текстура, имеющая преимущественное направление (111).

Механические свойства композитов

1. Проблема прочности материалов — одна из важнейших в физике твердого тела. Большое число работ было посвящено выяснению применимости эмпирических соотношений ХП (см. обзоры [11–13]), связывающих предел текучести σ_y и твердость H для поликристаллических материалов с величиной зерна d_g :


$$\sigma_y = \sigma_0 + K_y d_g^{-1/2}, \quad H = H_0 + K_{HP} d_g^{-1/2},$$
 (2)

где K_y и K_{HP} – коэффициенты XП; σ_0 и H_0 – константы, ассоциирующиеся с величинами соответственно σ_v и H для монокристалла.

Расчет [12], выполненный для мелкозернистых однофазных структур, по-казал, что существует критическое значение d_g , лежащее в субмикронной области, при котором потеря пластической устойчивости и разрушение материала наступают уже на пределе текучести, т.е. когда предел прочности $\sigma_b \approx \sigma_y$. В обзоре [11] приведены зависимости $H(d_g)$ для железа и меди. Установлено, что в случае железа в интервале 6 nm $\leq d_g \leq 200$ nm эта зависимость хорошо описывается вторым соотношением в (2), а при $d_g \leq 6$ nm наблюдается незначительное разупрочнение. В меди с уменьшением d_g заметен слабый рост величины d_g означений $d_g \approx 7$ nm, а с дальнейшим уменьшением d_g происходит снижение твердости. Зависимость $\sigma_y(d_g)$ носит аналогичный характер. В интервале 35 nm $\leq d_g \leq 160$ nm она хорошо описывается законом ХП, при $d_g \approx 25$ nm величина σ_y достигает максимума, а затем наблюдается разупрочнение [12]. Естественно предположить, что, как и в чистых металлах, прочность исследуемых композитов в субмикронной области d_g и d можно описать соотношением ХП.

2. На рис. 2 приведены зависимости $\sigma_b(K)$, где K — объемное содержание железа. Измерения проводили на образцах диаметром 0.21 mm с различным числом (диаметром) волокон (таблица). Эти зависимости носят немонотонный характер. С уменьшением величин K и d можно выделить три характерных области: $d \ge 10$ µm, в которой величина σ_b значительно падает; $d \approx 30$ —520 nm, где предел прочности возрастает; $d \le 30$ nm, в которой вновь наблюдается разупрочнение композита.

В области микронных значений d полученные зависимости хорошо описываются в соответствии с правилом смесей при условии равных деформаций. С уменьшением d (величина $K \le 0.4$) правило смесей нарушается – предел прочности композитов существенно возрастает. Можно предположить, что наблюдаемое отклонение от правила смесей обусловлено действием механизмов упрочнения композитов, которые описываются уравнением XП.

Рис. 2. Зависимости предела прочности деформированных (●) и отожженных (○) образцов композитов от объемного содержания железа и размера волокон

Рис. 3. Зависимости предела прочности медной $\overline{\sigma_b^{\text{Cu}}}$ (\circ) и железной σ_b^{Fe} (\bullet) компонент от объемного содержания железа и размера волокон (расчет)

Поскольку осуществить непосредственные механические испытания структурных составляющих нанометрических размеров невозможно, информацию о свойствах компонентов волокнистых композиционных материалов извлекали из результатов механических испытаний нанокомпозита в целом с привлечением правила смеси [6]. В предположении, что прочность нанокристаллической меди описывается соотношением XП, используя ее значения, взятые из работы [14], и анализируя структуру образцов, можно получить зависимость расчетной прочности медной матрицы от размерного фактора Δ_i :

$$\sigma_{b_i} = 220 + 2051\Delta_i^{1/2} \,, \tag{3}$$

где Δ_i — толщина медной прослойки в композите. Усредненная прочность матрицы рассчитывалась по формуле

$$\overline{\sigma_b^{\text{Cu}}} = \sum_{i=1}^m K_i \sigma_{b_i} , \qquad (4)$$

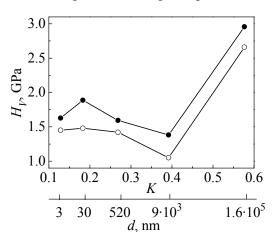
где K_i – объемная доля меди в i-й прослойке, σ_{b_i} определяется соотношением (3).

Зависимости предела прочности армирующих волокон и медной матрицы от размерного фактора приведены на рис. 3. Расчет основан на использовании модифицированного правила смеси [6]:

$$\sigma_b = \sigma_b^{\text{Fe}} K + \overline{\sigma_b^{\text{Cu}}} (1 - K) , \qquad (5)$$

где σ_b^{Fe} – предел прочности волокон железа.

Проанализируем характер полученных зависимостей. В первую очередь следует выделить участки, соответствующие $d\approx 9{\text -}160~\mu\text{m}$, где величины σ_b^{Fe} , $\overline{\sigma_b^{\text{Cu}}}$ практически не меняются. Как известно, прочностные характери-


стики объемных материалов во многом определяются размерами зерен. Вследствие особенностей технологии изготовления композитов при достаточно больших d величина зерен железа и меди изменялась незначительно. Как следствие, так же изменяются и значения $\sigma_b^{\rm Fe}$ и $\overline{\sigma_b^{\rm Cu}}$.

В интервале значений d от 9 µm до 30 nm предел прочности железной компоненты композитов возрастает в соответствии с соотношением ХП. В этой области d величина $\sigma_b^{\rm Fe}$ во много раз превышает предел прочности крупнозернистого железа.

При $d \le 30$ nm наблюдается падение σ_b^{Fe} . Отклонение от закона XП обусловлено процессами, протекающими в границах зерен, и механизмом зернограничного проскальзывания, отличными от таковых в макро- и микроразмерных состояниях [3,11,12].

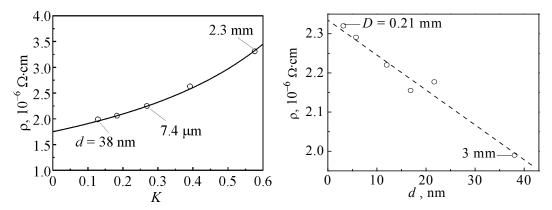
В отличие от зависимости $\sigma_b^{\rm Fe}(d)$ величина $\overline{\sigma_b^{\rm Cu}}$ с уменьшением K и d является монотонно возрастающей. Обусловлено это тем, что по мере роста числа волокон увеличивается и число медных прослоек со все меньшими значениями их толщины ($\Delta_i = 30$ nm–200 µm), что приводит к росту величины $\overline{\sigma_b^{\rm Cu}}$ в соответствии с (3) и (4). При этом согласно расчетам в исследуемых композитах размер зерен меди превышает критический (7–20 nm), при котором наблюдается нарушение закона ХП [11].

3. На рис. 4 приведены зависимости твердости по Виккерсу H_V композитов от K и d. Видно, что они качественно подобны зависимостям предела прочности, приведенным на рис. 2. Вместе с тем прирост H_V при переходе в субмикронную область d заметно меньше, чем для σ_b . Обусловлено это следующим. Величина H_V при $d \approx 160$ µm (биметалл) определяется в основном твердостью железа. При меньших размерах волокон (других типоразмерах композита) раз-

Рис. 4. Зависимости твердости деформированных (\bullet) и отожженных (\circ) образцов композитов от объемного содержания железа и размера волокон (D = 0.21 mm, поперечное сечение)

мер отпечатка индентора существенно превышает d, и H_V является уже некоторой средней интегральной величиной, определяемой железными волокнами и медной матрицей. Поэтому рост величины H_V с уменьшением d относительно невелик вследствие увеличения вклада более мягкой медной компоненты композита.

Отжиг приводит к уменьшению значений σ_b и H_V , не изменяя характер зависимостей (рис. 2, 4). Это обусловлено ростом величины зерен меди и железа, так как температура отжига выше температуры рекристаллизации компонент композита.


Резистивные свойства композитов

Известно, что в мелкозернистых материалах, в особенности при переходе в область наноразмеров, существенно возрастает роль рассеяния свободных носителей на дефектах решетки и межзеренных границах [1–3]. Это приводит к повышению удельного электрического сопротивления.

На рис. 5 показана зависимость удельного электросопротивления Cu–Fе-композитов от объемного содержания железа. Измерения проводили на образцах диаметром 3 mm с различным числом волокон (см. таблицу). Экспериментальные точки хорошо согласуются с зависимостью, полученной в соответствии с правилом смесей при параллельном соединении медной и железной компонент композита:

$$\rho = \frac{\rho_{\text{Fe}}\rho_{\text{Cu}}}{\rho_{\text{Fe}}(1-K) + \rho_{\text{Cu}}K},\tag{6}$$

где ρ , ρ_{Fe} , ρ_{Cu} – удельное электрическое сопротивление соответственно композита, железа и меди. При дальнейшем уменьшении величины d наблюдается отклонение от правила смесей, и удельное электрическое сопротивление композитов заметно возрастает по сравнению с расчетным (рис. 6).

Рис. 5. Зависимость удельного сопротивления композитов (D = 3mm) от объемного содержания железа: \circ – эксперимент, — – расчет

Рис. 6. Зависимость удельного сопротивления композита с $n = 85 \cdot 211^3$ от диаметра волокон (K = 0.13)

В наноструктурной меди при $d_g \approx 7$ nm ρ повышается на порядок в сравнении с крупнозернистой и составляет 10–30 $\mu\Omega$ ·cm [2,3]. Рост электрического сопротивления исследуемых композитов при переходе в область нанометровых значений d (рис. 6) определяется уменьшением структурных элементов. При изготовлении композитов проводили неоднократные технологические отжиги, поэтому размер зерен меди определяется величиной деформации на последнем этапе волочения. Так как эта величина мала (e=1.7), то не столь значительным будет и уменьшение размеров зерен меди, а следовательно, и рост электрического сопротивления медной матрицы. В железных волокнах

увеличение размера зерен ограничено их диаметром. Поскольку сопротивление железных волокон в композите шунтируется медной матрицей, наблюдаемый рост величины р композитов относительно невелик.

Выводы

Установлено, что в субмикронной области значений зерен твердость и предел прочности Сu–Fe-композитов удовлетворительно описываются в рамках закона XII, если в качестве характеристического размера взять диаметр железных волокон.

Полученные волокнистые Cu–Fe-композиты характеризуются удельным электрическим сопротивлением, близким к сопротивлению чистой меди, и повышенными прочностными характеристиками.

- 1. С.В. Шевченко, Н.Н. Стеценко, Успехи физики металлов 5, 219 (2004).
- 2. А.И. Гусев, УФН 168, 55 (1998).
- 3. Р.А. Андриевский, А.М. Глезер, ФММ 88, № 1, 50 (2000); 89, № 1, 91 (2000).
- 4. *Р.З. Валиев, И.В. Александров*, Объемные наноструктурные металлические материалы, Москва, ИКЦ Академкнига (2007).
- 5. *В.А. Белошенко, В.Н. Варюхин, В.З. Спусканюк*, Теория и практика гидроэкструзии, Наукова думка, Киев (2007).
- 6. *В.А. Белошенко, В.Н. Варюхин, Н.И. Матросов, Э.А. Медведская*, Гидропрессование волокнистых композиционных материалов, Наукова думка, Киев (2009).
- 7. В.А. Белошенко, В.Н. Варюхин, В.Ю. Дмитренко, Ю.И. Непочатых, В.З. Спусканюк, А.Н. Черкасов, Б.А. Шевченко, ЖТФ **79**, № 12, 68 (2009).
- 8. А.Н. Черкасов, В.А. Белошенко, В.З. Спусканюк, В.Ю. Дмитренко, Б.А. Шевчен-ко, ФММ **104**, 144 (2007).
- 9. X. Sauvage, F. Wetsher, P. Pareige, Acta Met. 53, 2127 (2005).
- 10. Н.Ю. Золотаревский, Е.В. Нестерова, В.В. Рыбкин, Ю.Ф. Титовец, ФММ **99**, № 1, 80 (2005).
- 11. В.А. Поздняков, ФММ 96, № 1, 114 (2003).
- 12. Г.А. Малыгин, ФТТ 49, 961 (2007).
- 13. Р.А. Андриевский, А.М. Глезер, УФН 179, 337 (2009).
- 14. Н.И. Носкова, А.В. Корзников, С.Р. Идрисова, ФММ 89, № 4, 103 (2000).

В.О. Білошенко, В.М. Варюхін, В.Ю. Дмитренко, Ю.І. Непочатих, А.М. Черкасов

ВОЛОКНИСТІ Cu-Fe-КОМПОЗИТИ, ОТРИМАНІ МЕТОДОМ ПАКЕТНОЇ ГІДРОЕКСТРУЗІЇ: СТРУКТУРА, МЕХАНІЧНІ ТА РЕЗИСТИВНІ ВЛАСТИВОСТІ

Досліджено структуру, механічні та резистивні властивості волокнистих Си–Fекомпозитів, у яких діаметр залізних волокон d варіювався в широких межах, включаючи субмікронну область $d \sim 10$ nm. Показано, що залежності межі міцності й твердості композитів від величини d задовільно описуються співвідношеннями

Хола–Петча (XП). Виявлено відхилення від правила сумішей для питомого електричного опору композитів у нанорозмірній області значень d.

Ключові слова: волокнистий композит, наноструктура, механічні властивості, резистивні властивості

V.A. Beloshenko, V.N. Varyukhin, V.Yu. Dmitrenko, Yu.I. Nepochatykh, A.N. Cherkasov

FIBROUS Cu-Fe COMPOSITES PRODUCED BY PACKET HYDROEXTRUSION: STRUCTURE, MECHANICAL AND RESISTIVE PROPERTIES

Structure, mechanical and resistive properties of fibrous Cu–Fe composites with iron fibre diameter d varied in a wide range, the submicron range of $d \sim 10$ nm inclusive, have been investigated. It is shown that the dependences of ultimate strength and hardness on d are satisfactorily described by Hall–Petch relationships. It has been found that the electrical resistivity of composites for d values in the nanodimensional range deviates from the mixing rule.

Keywords: fibrous composite, nanostructure, mechanical properties, resistive properties

- **Fig. 1.** Structure of Cu–Fe composites with different quantity of fibres: a, $\delta n = 211$; ϵ , $\epsilon 211^2$; δ , $\epsilon 211^3$
- **Fig. 2.** Dependences of the ultimate strength of deformed (\bullet) and annealed (\circ) samples of composites on iron content by volume and fibre size
- **Fig. 3.** Dependences of the ultimate strength of copper $\overline{\sigma_b^{\text{Cu}}}$ (\circ) and iron σ_b^{Fe} (\bullet) components on iron content by volume and fibre size (calculation)
- Fig. 4. Dependences of hardness of deformed (\bullet) and annealed (\circ) samples of composites on iron content by volume and fibre size (D = 0.21 mm in cross-section)
- **Fig. 5.** Dependence of composite's resistivity (D = 3mm) on iron content by volume: \circ experiment, – calculation
- **Fig. 6.** Dependence of composite's resistivity with $n = 85.211^3$ on fibre diameter (K = 0.13)